Cho tam giác abc vuông tại a có ab bé hơn ac.ah là đường cao.Gọi M là trung điểm ac,kẻ ai vuông góc với bm tại i a)Chứng minh cm²=mi.mb b)Chứng minh rằng bh.bc=bi.bm
Cho tam giác đều ABC cạnh 60 cm. Trên cạnh BC lấy điểm D sao cho BD = 20 cm. Đường trung trực của AD cắt các cạnh AB, AC lần lượt tại E và F. Kẻ DI vuông góc với AB tại I, DK vuông góc với AC tại K.
a) Tính độ dài các đoạn thẳng DI, BI, DK, KC.
b) Tính độ dài các cạnh của tam giác DEF.
Cho tam giác ABC vuông tại A (AB >AC )đường tròn tâm O đường kính AB cắt BC tại H. Gọi K là trung điểm của AC a,Chứng minh AH là đường cao của tam giác ABC b, Chứng minh tam giác KOH = tam giác KAO . Suy ra số đo KHI
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Tiếp tuyến tại A của (O) cắt BC tại S. Gọi I là trung điểm của BC.
a) Chứng minh tứ giác SAOI nội tiếp
b) Vẽ dây cung AD vuông góc với SO tại H. AD cắt BC tại K. Chứng minh SD là tiếp tuyến của đường tròn (O)
c) Chứng minh SK.SI = SB.SC
d) Vẽ đường kính PQ đi qua điểm I (Q thuộc cung CD), SP cắt đường tròn (O) tại M. Chứng minh M, K, Q thẳng hàng
Help me
Cho đường tròn (O) và một điểm A nằm ngoài (O). Dựng cát tuyến AMN không đi qua O, M nằm giữa A và N. Dựng hai tiếp tuyến AB,AC với (O) . Gọi I là trung điểm của MN. Hai tia BO và CI lần lượt cắt O tại D và E. Gọi K là giao điểm của BC và MN, H là giao điểm của BC và AO. Chứng minh \(\frac{AK}{AM}=\frac{AK}{AN}\)
Cho tam giác ABC đều, đường cao AD, trực tâm H. M là điểm bất kỳ trên cạnh BC. Gọi E, F thứ tự là hình chiếu của M trên AB và AC. Gọi I là trung điểm của AM. ID cắt EF tại K. a) DEIF là hình gì? b) CM: M, K, H thẳng hàng. c) Xác định vị trí của M trên BC để EF đạt GTNN. d) Tìm GTNN của SDEIF biết tam giác ABC có cạnh bằng a. e) Tìm quỹ tích điểm K
help me giải vs
Cho tam giác ABC, điểm I chuyển động trên cạnh BC. Gọi D là hình chiếu của I trên AB, E là hình chiếu của I trên AC. Lấy điểm M đối xứng với A qua D, N đối xứng với A qua E. CMR:
a) I là tâm đường tròn đi qua 3 điểm A, M, N
b) Đường tròn (I) nói trên luôn đi qua 1 điểm P cố định khác A
cho tam giác ABC cân tại A nội tiếp đường tròn (O). vẽ trung tuyến AM của tam giác ABC. gọi B' đối xứng với B qua O .Vẽ qua A vuông góc với CB' và cắt BC' tại H chứng minh AH là tiếp tuyến của đường tròn (O)
Cho đường tròn tâm Ở, kẻ tia tiếp tuyến Ax. Trên tia Ax lấy điểm M sao cho AM = R√3. vẽ tiếp tuyến MC( C là tiếp điểm). Đường vuông góc với AB tại Ở cắt BC tại D. a) Cm BD// OM b) xác định tứ giác OBDM c) xác định tứ giác AODM D) gọi E là giao điểm của AD với OM. Gọi F là giao điểm của MC với OD. Chứng minh EF là tiếp tuyến của 0