Ta có: VT = (-2) + 3 = 1
VP = 2
=> VT < VP nên khẳng định (-2) + 3 ≥ 2 là sai.
b) Ta có: VT = -6
VP = 2.(-3) = -6
=> VT = VP nên khẳng định -6 ≤ 2.(-3) là đúng.
c) Ta có: VT = 4 + (-8) = -4
VP = 15 + (-8) = 7
=> VP > VT nên khẳng định 4 + (-8) < 15 + (-8) là đúng.
d) Vì \(x^2\) ≥ 0 với mọi x ∈ R
=> \(x^2\) + 1 ≥ 0 + 1
=> \(x^2\) + 1 ≥ 1
Vậy khẳng định \(x^2\)+ 1 ≥ 1 là đúng.
(Kí hiệu: VP = vế phải; VT = vế trái)
a) Ta có: VT = (-2) + 3 = 1
VP = 2
=> VT < VP nên khẳng định (-2) + 3 \(\ge\) 2 là sai.
b) Ta có: VT = -6
VP = 2.(-3) = -6
=> VT = VP nên khẳng định -6 \(\le\) 2.(-3) là đúng.
c) Ta có: VT = 4 + (-8) = -4
VP = 15 + (-8) = 7
=> VP > VT nên khẳng định 4 + (-8) < 15 + (-8) là đúng.
d) Vì x2 \(\ge\)0 với mọi x ∈ R
=> x2 + 1 \(\ge\) 0 + 1
=> x2 + 1 \(\ge\) 1
Vậy khẳng định x2 + 1 \(\ge\) 1 là đúng.
a) (-2) + 3 ≥ 2
Ta có: VT = (-2) + 3 = 1
VP = 2
=> VT < VP
Vậy khẳng định (-2) + 3 ≥ 2 là sai
b) -6 ≤ 2.(-3)
Ta có: VT = -6
VP = 2.(-3) = -6
=> VT = VP
Vậy khẳng định -6 ≤ 2.(-3) là đúng
c) 4 + (-8) < 15 + (-8)
Ta có: VT = 4 + (-8) = -4
VP = 15 + (-8) = 7
=> VP > VT
Vậy khẳng định 4 + (-8) < 15 + (-8) là đúng
d) Vì x2 > 0 => x2 + 1 ≥ 0 + 1 => x2 + 1 ≥ 1
Vậy khẳng định x2 + 1 ≥ 1 là đúng
a) (-2) + 3 ≥ 2
Ta có: VT = (-2) + 3 = 1
VP = 2
=> VT < VP
Vậy khẳng định (-2) + 3 ≥ 2 là sai
b) -6 ≤ 2.(-3)
Ta có: VT = -6
VP = 2.(-3) = -6
=> VT = VP
Vậy khẳng định -6 ≤ 2.(-3) là đúng
c) 4 + (-8) < 15 + (-8)
Ta có: VT = 4 + (-8) = -4
VP = 15 + (-8) = 7
=> VP > VT
Vậy khẳng định 4 + (-8) < 15 + (-8) là đúng
d) Vì x2 > 0 => x2 + 1 ≥ 0 + 1 => x2 + 1 ≥ 1
Vậy khẳng định x2 + 1 ≥ 1 là đúng
a,sai vì
vt\(=\left(-2\right)+3=1\)
vp\(=2\)
mà
\(1< 2\)
Ta có: VT = (-2) + 3 = 1
VP = 2
=> VT < VP nên khẳng định (-2) + 3 ≥ 2 là sai.
b) Ta có: VT = -6
VP = 2.(-3) = -6
=> VT = VP nên khẳng định -6 ≤ 2.(-3) là đúng.
c) Ta có: VT = 4 + (-8) = -4
VP = 15 + (-8) = 7
=> VP > VT nên khẳng định 4 + (-8) < 15 + (-8) là đúng.
d) Vì x2x2 ≥ 0 với mọi x ∈ R
=> x2x2 + 1 ≥ 0 + 1
=> x2x2 + 1 ≥ 1
Vậy khẳng định x2x2+ 1 ≥ 1 là đúng.
tick và theo dõi giúp mình nha