Bài 2: Giới hạn của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lâm Oanh

mng giúp mk câu 35 vs ạundefined

Akai Haruma
22 tháng 2 2021 lúc 22:37

Lời giải:

\(\lim\limits_{x\to 2}\frac{x^2+ax+b}{2x^2-x-6}=\lim\limits_{x\to 2}\frac{x^2+ax+b}{(x-2)(2x+3)}\)

Để giới hạn này là hữu hạn thì $x^2+ax+b\vdots x-2$

$\Rightarrow 2^2+a.2+b=0\Leftrightarrow 2a+b=-4$

Đáp án A.

Nguyễn Việt Lâm
22 tháng 2 2021 lúc 22:41

\(2x^2-x-6=0\) có 1 nghiệm \(x=2\)

Do đó giới hạn đã cho là hữu hạn khi và chỉ khi \(x^2+ax+b=0\) cũng có 1 nghiệm \(x=2\)

\(\Rightarrow4+2a+b=0\Rightarrow b=-2a-4\)

Vậy:

\(\lim\limits_{x\rightarrow2}\dfrac{x^2+ax-2a-4}{2x^2-x-6}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2\right)+a\left(x-2\right)}{\left(x-2\right)\left(2x+3\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+a+2\right)}{\left(x-2\right)\left(2x+3\right)}=\lim\limits_{x\rightarrow2}\dfrac{x+a+2}{2x+3}=\dfrac{a+4}{7}\)

\(\Rightarrow\dfrac{a+4}{7}=\dfrac{3}{2}\Rightarrow a=\dfrac{13}{2}\Rightarrow b=-2a-4=-17\)

\(\Rightarrow2a+b=-4\)


Các câu hỏi tương tự
Meoww
Xem chi tiết
Meoww
Xem chi tiết
Mang Phạm
Xem chi tiết
Mang Phạm
Xem chi tiết
Mèo con
Xem chi tiết
Tien Do
Xem chi tiết
Trúc Phạm
Xem chi tiết