Theo đề bài ta có:
127 : n dư 15
\(\Rightarrow\) ( 127 - 15 ) \(⋮\) n
\(\Rightarrow\) 112 \(⋮\) n
90 : n dư 10
\(\Rightarrow\) ( 90 - 10 ) \(⋮\) n
\(\Rightarrow\) 80 \(⋮\) n
\(\Rightarrow\) n \(\in\) ƯC(112;80)
112 = 24 . 7
80 = 24 . 5
\(\Rightarrow\) ƯCLN(112;80) = 24 = 16
\(\Rightarrow\) ƯC(112;80) = { 1;2;4;8;16 }
Mà n > 15
\(\Rightarrow\) n = 16
Vậy n = 16
Ta có:
127 : n dư 15
⇒⇒ ( 127 - 15 ) ⋮⋮ n
⇒⇒ 112 ⋮⋮ n
90 : n dư 10
⇒⇒ ( 90 - 10 ) ⋮⋮ n
⇒⇒ 80 ⋮⋮ n
⇒⇒ n ∈∈ ƯC(112;80)
112 = 24 . 7
80 = 24 . 5
⇒⇒ ƯCLN(112;80) = 24 = 16
⇒⇒ ƯC(112;80) = { 1;2;4;8;16 }
Mà n > 15
⇒⇒ n = 16
Vậy n = 16
Theo đề, ta có:
127 chia n dư 15
=>127-15 chia hết cho n
=>112 chia hết cho n
90 chia n dư 10
=>90-10 chia hết cho n
=>80 chia hết cho n
=>n thuộc ƯC(112;80) và 15<n
Ta có:
112=2^4.7
80=2^4.5
=>ƯCLN(112;80)=2^4=16
=>ƯC(112;80)=Ư(16)={1;2;4;8;16}
Mà n thuộc ƯC(112;80) và 15<n
Nên n = 16
Vậy n = 16
127 : n dư 15
\(\Rightarrow127-15⋮n\\ \Rightarrow112⋮n\)
90:n dư 10
\(\Rightarrow90-10⋮n\\ \Rightarrow80⋮n\)
\(\Rightarrow n\in UC\left(112;80\right)\in\left\{1;2;4;8;16\right\}\)
Ta có : 127 chia n dư 15 => n>15
Vậy n=16