m.n ơi giúp mk giải bài này với, mk cần gấp
Cho đường tròn tâm O đường kính AB=2R. Gọi C và D là hai điểm thuộc đường tròn cho hai dây cung AC và BD cắt nhau tại I.
a/ Chứng minh rằng: \(\overrightarrow{AI}.\overrightarrow{AC}=\overrightarrow{AI}.\overrightarrow{AB}\) và \(\overrightarrow{BI}.\overrightarrow{BD}=\overrightarrow{BI}.\overrightarrow{BA}\)
b/ Gọi M là điểm nằm ngoài đường tròn (O). Đường thẳng qua M cắt đường tròn (O) tại hai điểm E, F. Chứng minh rằng: \(\overrightarrow{ME}.\overrightarrow{MF}=MO^2-R^2\)
mk cần gấp cho ngày mai ak mong m.n giúp mình, thank you very much