a.
ĐKXĐ: \(x\ge2\)
\(\dfrac{\sqrt{x}-\sqrt{x-1}}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}+\dfrac{\sqrt{x-1}-\sqrt{x-2}}{\left(\sqrt{x-1}+\sqrt{x-2}\right)\left(\sqrt{x-1}-\sqrt{x-2}\right)}=1\)
\(\Leftrightarrow\dfrac{\sqrt{x}-\sqrt{x-1}}{1}+\dfrac{\sqrt{x-1}-\sqrt{x-2}}{1}=1\)
\(\Leftrightarrow\sqrt{x}-\sqrt{x-2}=1\)
\(\Leftrightarrow\sqrt{x}=1+\sqrt{x-2}\)
\(\Leftrightarrow x=1+x-2+2\sqrt{x-2}\)
\(\Leftrightarrow2\sqrt{x-2}=1\)
\(\Leftrightarrow x-2=\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{9}{4}\)
b
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}=\dfrac{x-1}{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}=\dfrac{x-1}{2}\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|=\dfrac{x-1}{2}\)
Đặt \(\sqrt{x-1}=t\ge0\Rightarrow\left|t-1\right|+\left|t+1\right|=\dfrac{t^2}{2}\)
TH1: \(0\le t\le1\) pt trở thành:
\(1-t+t+1=\dfrac{t^2}{2}\Rightarrow t^2=4\)
\(\Rightarrow\left[{}\begin{matrix}t=2>1\left(ktm\right)\\t=-2< 0\left(ktm\right)\end{matrix}\right.\)
TH2: \(t>1\) pt trở thành:
\(t-1+t+1=\dfrac{t^2}{2}\Rightarrow t^2=2t\Rightarrow\left[{}\begin{matrix}t=0< 1\left(ktm\right)\\t=2\end{matrix}\right.\)
\(\Rightarrow\sqrt{x-1}=2\Rightarrow x=5\)