1: \(=lim\left(\dfrac{\dfrac{3}{n}-\dfrac{7}{n^2}+\dfrac{5}{n^3}}{4+\dfrac{1}{n^2}+\dfrac{1}{n^3}}\right)=0\)
2: \(=lim\left(\dfrac{2-\dfrac{1}{n^3}+\dfrac{5}{n^4}}{3+\dfrac{1}{n^2}-\dfrac{7}{n^4}}\right)=\dfrac{2}{3}\)
3: \(=lim\left(\dfrac{4+\dfrac{1}{n^2}+\dfrac{7}{n^3}}{\dfrac{2}{n}-\dfrac{1}{n^2}+\dfrac{5}{n^3}}\right)=+\infty\)
4: \(=lim\left(\dfrac{\left(\dfrac{4}{5}\right)^n+3}{2-\left(\dfrac{3}{5}\right)^n}\right)=\dfrac{3}{2}\)
5: \(=lim\left(\dfrac{2\cdot\left(\dfrac{3}{5}\right)^n+4}{3\cdot\left(\dfrac{4}{5}\right)^n+2\cdot\left(\dfrac{3}{5}\right)^n}\right)=+\infty\)
6: \(=lim\left(\dfrac{\sqrt{2+\dfrac{1}{n}-\dfrac{5}{n^2}}+3}{4-\dfrac{1}{n}}\right)=\dfrac{3}{4}\)
7: \(=lim\left(\dfrac{\sqrt{\dfrac{2}{n^2}+\dfrac{1}{n^3}+\dfrac{1}{n^4}}-\dfrac{1}{n}}{4+\dfrac{1}{n}-\dfrac{3}{n^2}}\right)=+\infty\)