\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)
\(M=2^{2010}-2^{2009}-2^{2008}-...-2^1-2^0\)
\(M=2^{2009}\left(2-1\right)-2^{2008}-...-2^1-2^0\)
\(M=2^{2009}-2^{2008}-2^{2007}-...-2^1-2^0\)
\(M=2^{2008}\left(2-1\right)-2^{2007}-...-2^1-2^0\)
\(M=2^{2008}-2^{2007}-2^{2006}-...-2^1-2^0\)
...........................................
\(M=2^1-2^0=2-1=1\)
đặt M1 = 22009 + 22008 +...+21 + 20
⇒ 2M1 = 22010 + 22009 + ... + 22 + 21
⇒ 2M1 - M1 = 22010 + 22009 + ... + 22 + 21 - (22009 + 22008 + ... + 21 + 20)
⇒ M1 = 22010 - 20
⇒ M = 22010 - (22010 - 20)
⇒ M = 22010 - 22010 +20
⇒ M = 0 + 1 = 1
Vậy M = 1