Cho tam giác ABC cân tại A. M là trung điểm BC. Các điểm D, E lần lượt thuộc các cạnh AB, AC sao cho góc CME = góc BDM. Chứng minh:
a, \(BD.CE=BM^2\).
b, Tam giác MDE\(\approx\)tam giác BDM.
c, DM là phân giác góc BDE.
1.cho tam giác ABC cân tại A. M là trung điểm của BC. D,E lần lượt thuộc các cạnh AB,ACsao cho góc DEM= góc B. CMR :a) DM là tia phân giác góc BDE. b)BDxCE=BC^ : 4
Cho tam giác ABC cân tại A, BC=2a. Gọi M là trung điểm của BC. Lấy điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho DM là tia phân giác của góc BDE. Chứng minh :
a, EM là tia phân giác của góc CED
b, tam giác BDM đồng dạng với tam giác CME
c, BD.CE=a^2
Cho tam giác ABC vuông ở A đường cao AH
a) tam giác AHB đồng dạng tam giác CAB
b)phân giác BD cắt AH tại E (D thuộc AC)
c)chứng minh rằng EA/EH = DC/DC
d) Giả sử tam giác ABC vuông cân tại A lấy M là trung điểm của AC đường thẳng qua A vuông góc với BM cắt BC ở F .chứng minh BF=2FC
cho tam giác ABC cân tại A.Gọi M là trung điểm của BC.Lấy D thuộc cạnh AB và E thuộc cạnh AC sao cho góc DME=ABC.CM:
1,Tam giác BMD đồng dạng với tam giác CEM
2,MD/BD=ME/MB
3,Tam giacs BDM đồng dạng với tam giác MDE.
4,DM là tia phân giác của góc BDE
AI HỘ MÌNH VỚI,TỐI NỘP RỒI :((
cho tam giác ABC vuông tại A (AC>AB),đường cao AH.Trên tia HC lấy điểm D sao cho HD=AH.Qua D kẻ đường thẳng vuông góc với BC,cắt cạnh AC tại E.a)Chứng minh tam giác ABC đồng dạng tam giác HAC;b)Chứng minh EC.AC=DC.BC;c)Chứng minh tam giác BEC đồng dạng tam giác ADC và tam giác ABE vuông cân
Cho tam giác ABC cân tại A, gọi M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho goác DME= góc B. Chứng minh:
a, BD.CE=\(\dfrac{1}{4}\)BC2
b, DM là tia phân giác của góc BDE
c, Chu vi am giác ADE không đổi khi D và E di chuyển trên cạnh AB và AC
Cho tam giác ABC có AB>AC, BE là phân giác, BD là trung tuyến (E,D thuộc cạnh AC). Đường thẳng qua C vuông góc với BE cắt BE, BD và BA lần lượt tại F, G và K. Gọi M là giao điểm của DF với BC. Chứng minh:
a)M là trung điểm của đoạn thẳng BC
b) DA/DE = 1+BK/DF
c)Đường thẳng GE song song với BC
Cíu với.
Cho tam giác abc có AB = 3cm, BC = 7cm, BD là đường phân giác (D thuộc AC). Kẻ AH, CK vuông với BD.
a) Chứng minh tam giác AHD ~ tam giác CKD.
b) Chứng minh Ad.BK = BC.BH.
c) Qua trung điểm I của AC kẻ đường thẳng song song BD cắt BC tại M, cắt tia AB tại N. Chứng minh AN = CM.
d) Chứng minh Sabc = 5Sbdi