\(\lim\limits_{x\rightarrow2}\dfrac{x^4+8}{x^3+2x^2+x+2}=\dfrac{2^4+8}{2^3+2.2^2+2+2}=\dfrac{6}{5}\)
\(\lim\limits_{x\rightarrow2}\dfrac{x^4+8}{x^3+2x^2+x+2}=\dfrac{2^4+8}{2^3+2.2^2+2+2}=\dfrac{6}{5}\)
\(lim_{x-->2}\)\(\dfrac{2x^2-5x+2}{x^3-8}\)
\(lim_{x\rightarrow\left(-2\right)^+}\dfrac{\sqrt{8+2x}-2}{\sqrt{x+2}}\)
Tính \(lim_{x\rightarrow1}\dfrac{\sqrt{2x+7}-3}{x^3-2x^2+2022x-2021}\)
\(\lim_{x\to -\infty} ((2x+1)^2+4\sqrt{x^2+4}\sqrt[3]{x^3+3x^2})\)
\(lim_{x\rightarrow2^-}\left(\dfrac{1}{x-2}-\dfrac{1}{x^2-4}\right)\)
Tính giới hạn
a, \(Lim_{n->+\infty}\frac{1+sin\left(n\right)+2^{n+2}}{2-2n+2^n}\)
b,\(Lim_{x->0}\frac{e^x-1-xcos\left(x\right)}{x\left(e^{2x}-1\right)}\)
c,\(Lim_{n->+\infty}\sqrt[2n]{8^n+9^n}\)
d,\(Lim_{x->0}\frac{\ln\left(1+x\right)-xe^3}{x\tan\left(2x\right)}\)
Tính giới hạn
a, \(Lim_{n->+\infty}\frac{1+sin\left(n\right)+2^{n+2}}{2-2n+2^n}\)
b,\(Lim_{x->0}\frac{e^x-1-xcos\left(x\right)}{x\left(e^{2x}-1\right)}\)
c,\(Lim_{n->+\infty}\sqrt[2n]{8^n+9^n}\)
d,\(Lim_{x->0}\frac{\ln\left(1+x\right)-xe^3}{x\tan\left(2x\right)}\)
\(lim_{x\rightarrow0}\dfrac{\sqrt{x^3+1}-1}{x^2+x}\)
\(lim_{x\rightarrow0}\left(\dfrac{1}{x}-\dfrac{1}{x^2}\right)\)