\(lim\left(\sqrt{n^2+2n+3}-n+1\right)=lim\left(\frac{n^2+2n+3-n^2}{\sqrt{n^2+2n+3}+n}+1\right)\)
\(=lim\left(\frac{2n+3}{\sqrt{\sqrt{n^2+2n+3}+n}}+1\right)=lim\left(\frac{2+\frac{3}{n}}{\sqrt{1+\frac{2}{n}+\frac{3}{n^2}}+1}+1\right)\)
\(=\frac{2+0}{\sqrt{1+0+0}+1}+1=2\)