\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5+x^2-7-x^2}{\sqrt{5+x^2}+\sqrt{7+x^2}}=\lim\limits_{x\rightarrow-\infty}\dfrac{-\dfrac{2}{x}}{-\sqrt{\dfrac{5}{x^2}+\dfrac{x^2}{x^2}}-\sqrt{\dfrac{7}{x^2}+\dfrac{x^2}{x^2}}}=0\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5+x^2-7-x^2}{\sqrt{5+x^2}+\sqrt{7+x^2}}=\lim\limits_{x\rightarrow-\infty}\dfrac{-\dfrac{2}{x}}{-\sqrt{\dfrac{5}{x^2}+\dfrac{x^2}{x^2}}-\sqrt{\dfrac{7}{x^2}+\dfrac{x^2}{x^2}}}=0\)
a) lim ( \(\sqrt{x^2-x+1}-\sqrt{x^2+x+1}\)
x-> +∞
b) lim \(\dfrac{\sqrt{4x+1}-3}{x^2-4}\)
x-> 2
c) lim \(\dfrac{\sqrt{2x+5}-1}{x^2-4}\)
x-> -2
a) lim \(\dfrac{x\sqrt{x^2+1}-2x+1}{^3\sqrt{2x^3-2}+1}\)
x-> -∞
b) lim \(\dfrac{\left(2x+1\right)^3\left(x+2\right)^4}{\left(3-2x\right)^7}\)
x-> -∞
c) lim \(\dfrac{\sqrt{4x^2+x}+^3\sqrt{8x^3+x-1}}{^4\sqrt{x^4+3}}\)
x-> +∞
a) lim ( x2+x-1)
x-> -∞
b) lim ( \(\sqrt{x^2+x+1}-2\sqrt{x^2-x}+x\))
x-> +∞
c) lim x\(\left(\sqrt{x^2+2x}-2\sqrt{x^2+x}+x\right)\)
x-> +∞
Tìm giơi han:
a) lim (x-> \(+\infty\)) \(\dfrac{\sqrt{x^2+1}+x}{5-2x}\)
b) lim (x->4) \(\left(\dfrac{\sqrt{15x+4}-\sqrt{x-3}-3}{-x+4}\right)\)
sorry, e k bt nhâp lim ..
tính \(\lim\limits_{x\rightarrow0}\left(\dfrac{x}{\sqrt[7]{x+1}.\sqrt{x+4}-2}\right)\)
lim (\(\sqrt{5x^2+2x}+x\sqrt{5}\))
x-> -∞
a) lim \(\dfrac{2x-\sqrt{3x^2+2}}{5x+\sqrt{x^2+2}}\)
x-> +∞
b) lim \(\sqrt{\dfrac{x^2+1}{2x^4+x^2-3}}\)
x-> ∞
lim x ( \(\sqrt{x^2+5}-x\))
x-> +∞
a) lim (2x+ \(\sqrt{4x^2-x+1}\))
x-> -∞
b) lim x\(\left(\sqrt{4x^2+1}-x\right)\)
x-> -∞