\(\lim\limits_{x\rightarrow-4}\frac{\left(x-1\right)\left(x+4\right)}{x\left(x+4\right)}=\lim\limits_{x\rightarrow-4}\frac{x-1}{x}=\frac{-5}{-4}=\frac{5}{4}\)
\(\lim\limits_{x\rightarrow-4}\frac{\left(x-1\right)\left(x+4\right)}{x\left(x+4\right)}=\lim\limits_{x\rightarrow-4}\frac{x-1}{x}=\frac{-5}{-4}=\frac{5}{4}\)
Cho lim \(\frac{f\left(x\right)+1}{x-1}=-1\) ( x \(\rightarrow\) 1 ) . Tính I = lim \(\frac{\left(x^2+x\right).f\left(x\right)+2}{x-1}\) ( x \(\rightarrow\) 1 )
A. I = 5
B. I = -4
C. I = 4
D. I = -5
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-x+1}-x\right)\)
\(\lim\limits_{x\rightarrow-\infty}x\left(\sqrt{4x^2+1}-x\right)\)
\(\lim\limits_{x\rightarrow-\infty}\left(4x^5-3x^3+x+1\right)\)
\(\lim\limits_{x\rightarrow+\infty}\sqrt{x^4-x^3+x^2-x}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{3x^3+1}-\sqrt{2x^2+x+1}}{\sqrt[4]{4x^4+2}}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2x+1\right)^3\left(x+2\right)^4}{\left(3-2x\right)^7}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{4x^2-3x+4}-2x}{\sqrt{x^2+x+1}-x}\)
Tìm giới hạn E = lim \(\left(\sqrt[4]{16x^4+3x+1}-\sqrt{4x^2+2}\right)\) \(\left(x\rightarrow+\infty\right)\)
A. \(+\infty\)
B. \(-\infty\)
C. \(\frac{1}{4}\)
D. 0
Kết quả của giới hạn
lim \(\frac{x^2-4}{x-2}\) (x \(\rightarrow\) 2 ) bằng :
A. 0
B. 4
C. -4
D. 2
Tìm các giới hạn sau :
a) \(\lim\limits_{x\rightarrow2}\dfrac{x+3}{x^2+x+4}\)
b) \(\lim\limits_{x\rightarrow-3}\dfrac{x^2+5x+6}{x^2+3x}\)
c) \(\lim\limits_{x\rightarrow4^-}\dfrac{2x-5}{x-4}\)
d) \(\lim\limits_{x\rightarrow+\infty}\left(-x^3+x^2-2x+1\right)\)
e) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+3}{3x-1}\)
f) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-2x+4}-x}{3x-1}\)
Cho lim \(\frac{x^2+ax+b}{x^2-1}=-\frac{1}{2}\) ( a , b \(\in\) R ) ( x\(\rightarrow\) 1) . Tổng \(S=a^2+b^2\) bằng
A. S = 13
B. S = 9
C. S = 4
D. S = 1
Trong các giới hạn sau , giới hạn nào không tồn tại ?
A. \(lim\frac{x+1}{\sqrt{x-2}}\left(x\rightarrow1\right)\)
B. \(lim\frac{x+1}{\sqrt{-x+2}}\left(x\rightarrow-1\right)\)
C. \(lim\frac{x+1}{\sqrt{2-x}}\left(x\rightarrow1\right)\)
D. \(lim\frac{x+1}{\sqrt{2+x}}\left(x\rightarrow-1\right)\)
giới hạn lim \(\frac{\sqrt{x+1}-\sqrt[3]{x+5}}{x-3}\) ( x \(\rightarrow\) 3 ) bằng
A. 0
B. \(\frac{1}{2}\)
C. \(\frac{1}{3}\)
D. \(\frac{1}{6}\)