Bài 4: Ôn tập chương Giới hạn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn thị Phụng

Cho lim \(\frac{x^2+ax+b}{x^2-1}=-\frac{1}{2}\) ( a , b \(\in\) R ) ( x\(\rightarrow\) 1) . Tổng \(S=a^2+b^2\) bằng

A. S = 13

B. S = 9

C. S = 4

D. S = 1

Nguyễn Việt Lâm
29 tháng 5 2020 lúc 22:06

\(\lim\limits_{x\rightarrow1}\frac{x^2+ax+b}{\left(x-1\right)\left(x+1\right)}=-\frac{1}{2}\) hữu hạn

\(\Rightarrow\) phương trình \(x^2+ax+b=0\) có 1 nghiệm bằng 1

\(\Leftrightarrow1+a+b=0\Rightarrow b=-a-1\)

\(\lim\limits_{x\rightarrow1}\frac{x^2+ax-a-1}{\left(x+1\right)\left(x-1\right)}=\lim\limits_{x\rightarrow1}\frac{\left(x+a+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\frac{x+a+1}{x+1}=\frac{a+2}{2}\)

\(\Rightarrow\frac{a+2}{2}=-\frac{1}{2}\Rightarrow a=-3\Rightarrow b=2\)

\(\Rightarrow a^2+b^2=\left(-3\right)^2+2^2=13\)


Các câu hỏi tương tự
maianh nguyễn
Xem chi tiết
Nguyễn thị Phụng
Xem chi tiết
Phụng Nguyễn Thị
Xem chi tiết
Nguyễn thị Phụng
Xem chi tiết
Nguyễn thị Phụng
Xem chi tiết
Phụng Nguyễn Thị
Xem chi tiết
Nguyễn thị Phụng
Xem chi tiết
Nguyễn thị Phụng
Xem chi tiết
Hiếu Nghĩa Nguyễn
Xem chi tiết