\(x\ge-\frac{2}{3}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{3x+4}=a>0\\\sqrt{3x+2}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=2\)
Pt trở thành:
\(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-b\right)\left(1+ab\right)-\left(a-b\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left[a\left(b-1\right)-\left(b-1\right)\right]=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=1\\b=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+4}=\sqrt{3x+2}\\\sqrt{3x+4}=1\\\sqrt{3x+2}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}4=2\left(vn\right)\\x=-1< -\frac{2}{3}\left(l\right)\\x=-\frac{1}{3}\end{matrix}\right.\)