Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trx Bình

Giải phương trình sau

a, x2 + 3 - \(\sqrt{2x^2-3x+2}=\frac{3}{2}\left(x+1\right)\)

b, \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)

Giúp mik với cảm ơn các bn nhiều ạ !

Ngẫu Hứng
30 tháng 7 2019 lúc 10:42

a) \(x^2+3-\sqrt{2x^2-3x+2}=\frac{3}{2}\left(x+1\right)\)

\(\Leftrightarrow x^2.2+3.2-\sqrt{2x^2-3x+2}.3=\frac{3}{2}\left(x+1\right).2\)

\(\Leftrightarrow2x^2+6-\sqrt{2x^2-3x+2}=3\left(x+1\right)\)

\(\Leftrightarrow2x^2+6-2\sqrt{2x^2-3x+2}=3x+3\)

\(\Leftrightarrow-2\sqrt{2x^2-3x+2}+6=3x^2+3-2x^2\)

\(\Leftrightarrow-2\sqrt{2x^2-3x+2}=3x+3-2x^2-6\)

\(\Leftrightarrow-2\sqrt{2x^2-3x+2}=-2x^3+3x-3\)

\(\Leftrightarrow\left(-2\sqrt{2x^2-3x+2}\right)^2=\left(-2x^2+3x-3\right)^2\)

\(\Leftrightarrow8x^2-12x+8=4x^4-12x^3+21x^2-18x+9\)

\(\Leftrightarrow4x^2-12x^3+12x^2-6x+1=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(2x-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: nghiệm phương trình là \(\left\{1;\frac{1}{2}\right\}\)

Trần Thanh Phương
30 tháng 7 2019 lúc 11:06

b) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)

\(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)

Xét \(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|\)

\(=\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=\left|1\right|=1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{x-1}-2\right)\left(3-\sqrt{x-1}\right)\ge0\Leftrightarrow5\le x\le10\)


Các câu hỏi tương tự
Nhược Vũ
Xem chi tiết
Haa My
Xem chi tiết
Hiếu Cao Huy
Xem chi tiết
Ánh Dương
Xem chi tiết
Hoàng Thùy Linh
Xem chi tiết
ITACHY
Xem chi tiết
Bành Thụy Hóii
Xem chi tiết
NGuyễn Văn Tuấn
Xem chi tiết
NGuyễn Văn Tuấn
Xem chi tiết