cho hai biểu thức A=\(\left(\frac{15-\sqrt{x}}{x-25}+\frac{2}{\sqrt{x}+5}\right):\frac{\sqrt{x}+1}{\sqrt{x}-5}\)và B=\(\frac{1-\sqrt{x}}{1+\sqrt{x}}\)với x≥0 và x≠25
a)rút gọn A
b)tìm x thực để M=A-B có giá trị nguyên
cho p=\(\frac{12}{\sqrt{x}+5}\) và q=\(\frac{\sqrt{x}}{\sqrt{x}+3}-\frac{\sqrt{x}-15}{9-x}\)
tìm gtrị của x để p= /q/
bài 2
cho b=\(\left[\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}-3}{1-x}\right]:\left[\frac{x+2}{x+\sqrt{x}-2}-\frac{\sqrt{x}}{\sqrt{x}+2}\right]\)
vs 0< hoặc = x< hoặc =1/9 so sah b vs \(\sqrt{b}\)
cho hai biểu thức A=\(\frac{\sqrt{x}-1}{\sqrt{x}-5}\)và B=\(\frac{\sqrt{x}+3}{\sqrt{x}+1}+\frac{5}{\sqrt{x}-1}+\frac{4}{x-1}\)với x≥0,x≠1 và x≠25
a)rút gọn B
b)so sánh C=\(\left(A.B+\frac{x-5}{\sqrt{x}-5}\right).\frac{\sqrt{x}-5}{\sqrt{x}}\)với 3
P=\(\left(\frac{2}{\sqrt{x}-1}-\frac{5}{x+\sqrt{x}+2}\right):\left(1+\frac{3-x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right)\)
a) rút gọn P
Rút gọn
A=\(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)
B=\(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right).\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)\)
C=\(\left(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x-1}\right)\)
giải giùm mình bài này:
1. Cho A=\(\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{5}{x+\sqrt{x}-6}-\frac{1}{\sqrt{x}-2}\)
a) tìm điều kiện
b) rút gọn
c) tính A biết x=\(6+4\sqrt{2}\)
2. Cho A=\(\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}+3}{2-\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right):\left(2-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a) rút gọn
b) tìm x để \(A=\frac{-2}{5}\)
Chứng minh các biểu thức sau không phụ thuộc vào biến:
a) A = \(\frac{1}{x}.\left(\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}+\frac{\sqrt{x+1}-\sqrt{x-1}}{\sqrt{x+1}+\sqrt{x-1}}\right)\) với x>1
b) B = \(\frac{2x}{x+3\sqrt{x}+2}+\frac{5\sqrt{x}+1}{x+4\sqrt{x}+3}+\frac{\sqrt{x}+10}{x+5\sqrt{x}+6}\) với x>= 0
c) C = \(\frac{\sqrt{a^3}+a}{a^2+\sqrt{a^5}}.\left(\frac{b^2}{a-\sqrt{a^2-b^2}}+\frac{b^2}{a+\sqrt{a^2-b^2}}\right)\) với a>0 và |a| > |b|
d) D = \(\frac{a+b\sqrt{a}}{b-a}.\sqrt{\frac{ab+a^2-2\sqrt{a^3b}}{b^2+2b\sqrt{a}+a}}:\frac{a}{\sqrt{a}+\sqrt{b}}\) với b>a>0
P=\(\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
a) Rút gọn P
b) Tìm x để P =\(\frac{6}{5}\)
P=\(\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
a) Rút gọn P
b) Tìm x để P=\(\frac{6}{5}\)