đk : x > = 0 ; x khác 4
\(=\left(\dfrac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\right):\dfrac{1}{x-4}=2\sqrt{x}\)
đk : x > = 0 ; x khác 4
\(=\left(\dfrac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\right):\dfrac{1}{x-4}=2\sqrt{x}\)
\(B=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right).\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\)\(\left(x>0,x\ne1\right)\)
gptr:
1, \(\dfrac{x}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}=\dfrac{2}{x}\)
2, \(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}=\sqrt{3}\left(\dfrac{1}{\sqrt{4x-1}}+\dfrac{1}{\sqrt{5x-2}}\right)\)
3,\(\sqrt{-x^2+4x+21}-\sqrt{-x^2+3x+10}=\sqrt{2}\)
Éttttt ooooo éttttt. mời các thiên tài toán học ạ
\(\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{2\left(x-2\sqrt{2}+1\right)}{x-1}\)
Rút gọn bt A=\(\left(\dfrac{1+\sqrt{x}}{x+1}-\dfrac{4-3\sqrt{x}}{x-4\sqrt{x}+4}\right):\left(\dfrac{x-\sqrt{x}}{x\sqrt{x}-2x+\sqrt{x}-2}\right)\)
Sau đó tìm x để A>1
Rút gọn các biểu thức sau:
a. A = \(\dfrac{1}{2-\sqrt{3}}+\dfrac{1}{2+\sqrt{3}}\)
b. B = \(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\) (x > 0 ; x ≠ 1)
Rút gọn các biểu thức sau:
a. \(A=\dfrac{1}{2-\sqrt{3}}+\dfrac{1}{2+\sqrt{3}}\)
b. \(B=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\) (x > 0 ; x ≠ 1)
Cho biểu thức:
P = \(\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\left(x>0,x\ne4,x\ne9\right)\)
a) Rút gọn P
b) Với \(x>9\), tìm GTNN của P
rủ gọn biểu thức
\(C=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right)\) : \(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)vs \(x\ge0,x\ne1\)
cho bt A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left[\dfrac{2}{x}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right]\)
a)rút gọn bt A
b)tính giá trị của bt A khi\(x=4+2\sqrt{3}\)
c)tìm giá trị của x để bt \(\sqrt{A}\)có giá trị nỏ nhất