Giải hệ
a) \(\left\{{}\begin{matrix}x^2\left(y^2+1\right)+2y\left(x^2+x+1\right)=3\\\left(x^2+x\right)\left(y^2+y\right)=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(6x+5\right)\sqrt{2x+1}-2y-3y^3=0\\y+\sqrt{x}=\sqrt{2x^2+4x-23}\end{matrix}\right.\)
Giải bất pt
\(\dfrac{9}{\left|x-5\right|-3}\ge\left|x-2\right|\)
giải giúp mik bt này vs mn!
1)\(\left\{{}\begin{matrix}2x^2+y^2+x=3\left(xy+1\right)+2y\\\dfrac{2}{3+\sqrt{2x-y}}+\dfrac{2}{3+\sqrt{4-5x}}=\dfrac{9}{2x-y+9}\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}\left(x+3y+1\right)\sqrt{2xy+2y}=y\left(3x+4y+3\right)\\\left(\sqrt{x+3}-\sqrt{2y-2}\right)\left(x-3+\sqrt{x^2+x+2y-4}\right)=4\end{matrix}\right.\)
3)\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}\sqrt{2x-3}=\left(y^2+2011\right)\left(5-y\right)+\sqrt{y}\\y\left(y-x+2\right)=3x+3\end{matrix}\right.\)
5)\(\left\{{}\begin{matrix}x^3+2x^2=x^2y+2xy\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14=x-2}\end{matrix}\right.\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}x^3+2y^2=x^2y+2xy\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}2\sqrt{x+y^2+y+3}-3\sqrt{y}=\sqrt{x+2}\\y^3+y^2-3y-5=3x-3\sqrt[3]{x}+2\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\left(x-2\right)\left(2y-1\right)=x^3+20y-28\\2\left(\sqrt{x+2y}+y\right)=x^2+x\end{matrix}\right.\)
1,\(\left\{{}\begin{matrix}x^2-2y^2-xy=0\\\sqrt{2x}+\sqrt{y+1}=2\end{matrix}\right.\)
2,\(\left\{{}\begin{matrix}\left(x-y\right)\left(x+y+y^2\right)=x\left(y+1\right)\\\sqrt{x}+\sqrt{y+1}=2\end{matrix}\right.\)
3,\(\left\{{}\begin{matrix}2y^3-\left(x+4\right)y^2+8y+x^2-4x=0\\\sqrt{\frac{1-x}{2}}+\sqrt{x+2y+3}=\sqrt{5}\end{matrix}\right.\)
ai giúp t với
1:\(\left\{\begin{matrix}x\sqrt{12-y}+\sqrt{y\left(12-x^2\right)}=12\\x^3-8x-1=2\sqrt{y-2}\end{matrix}\right.\)
2:\(\left\{\begin{matrix}\left(1-y\right)\sqrt{x-y}+x=2+\left(x-y-1\right)\sqrt{y}\\2y^2-3x+6y+1=2\sqrt{x-2y}-\sqrt{4x-5y-3}\end{matrix}\right.\)
3:\(\left\{\begin{matrix}y\left(x^2+2x+2\right)=x\left(y^2+6\right)\\\left(y-1\right)\left(x^2+2x+7\right)=\left(x+1\right)\left(y^2+1\right)\end{matrix}\right.\)
4:\(\left\{\begin{matrix}x-2\sqrt{y+1}=3\\x^3-4x^2\sqrt{y+1}-9x-8y=-52-4xy\end{matrix}\right.\)
5:\(\left\{\begin{matrix}\frac{y-2x+\sqrt{y}-x}{\sqrt{xy}}+1=0\\\sqrt{1-xy}+x^2-y^2=0\end{matrix}\right.\)
Giúp mình với, thanks các bạn nhiều: ^^ BT/ Giải hệ pt:
1/\(\left\{{}\begin{matrix}x^3+y^3=1\\x^2y+2xy^2+y^3=2\end{matrix}\right.\) 2/\(\left\{{}\begin{matrix}y^2=\left(x+8\right).\left(x^2+2\right)\\y^2-4\left(x+2\right)y+16+16x-5x^2=0\end{matrix}\right.\)
3/\(\left\{{}\begin{matrix}x^2-3x\left(y-1\right)+y^2+y\left(x-3\right)=4\\x-xy-2y=1\end{matrix}\right.\) 3/\(\left\{{}\begin{matrix}\sqrt{x}-\sqrt{x-y-1}=1\\y^2+x+2y\sqrt{x}-xy^2=0\end{matrix}\right.\)
giải hệ phương trình
1, \(\left\{{}\begin{matrix}2x^2+3y=17\\3x^2-2y=6\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\left|x-1\right|+\left|y-1\right|=2\\4\left|x-1\right|+3\left|y-1\right|=7\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=2\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\)
4 , \(\left\{{}\begin{matrix}x+y=2\\\left|2x-3y\right|=1\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}2x-y=1\\\left|x-y\right|=\left|2y-1\right|\end{matrix}\right.\)
6,\(\left\{{}\begin{matrix}\left(x-3\right)\left(y+6\right)=xy\\\left(x+2\right)\left(y-2\right)=xy\end{matrix}\right.\)
7 , \(\left\{{}\begin{matrix}\left(x-3\right)\left(2y+5\right)=\left(2x+7\right)\left(y-1\right)\\\left(4x+1\right)\left(3y-6\right)=\left(6x-1\right)\left(2y+3\right)\end{matrix}\right.\)
8 , \(\left\{{}\begin{matrix}4x^2-5\left(y+1\right)=\left(2x-3\right)^2\\3\left(7x+2\right)=5\left(2y-1\right)-3x\end{matrix}\right.\)
GHPT: \(\left\{{}\begin{matrix}x+\sqrt{x^2+2x+2}=\sqrt{y^2+1}-y-1\\x^3-\left(3x^2+2y-6\right)\sqrt{2x^2-y-2}=0\end{matrix}\right.\)
1,\(\left\{{}\begin{matrix}x-y^2+1=0\\\sqrt{y^2+3}+x=2\end{matrix}\right.\)
2,\(\left\{{}\begin{matrix}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{matrix}\right.\)
3,\(\left\{{}\begin{matrix}xy+x-2=0\\2x^3-x^2y+x^2+y^2-2xy-y=0\end{matrix}\right.\)