Bài 1: Phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Anh Quỳnh

\(\left\{{}\begin{matrix}\dfrac{xy}{x+y}=2\\\dfrac{yz}{y+z}=4\\\dfrac{zx}{z+x}=3\end{matrix}\right.\)

Akai Haruma
19 tháng 2 2019 lúc 23:16

Lời giải:

Từ đề bài ta dễ dàng suy ra \(x,y,z\neq 0\)

Đảo lại ta thu được hệ:

\(\left\{\begin{matrix} \frac{x+y}{xy}=\frac{1}{2}\\ \frac{y+z}{yz}=\frac{1}{4}\\ \frac{x+z}{xz}=\frac{1}{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}=\frac{1}{2}(1)\\ \frac{1}{y}+\frac{1}{z}=\frac{1}{4}(2)\\ \frac{1}{x}+\frac{1}{z}=\frac{1}{3}(3)\end{matrix}\right.\)

Lấy \(\frac{(1)+(2)+(3)}{2}\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{\frac{1}{2}+\frac{1}{4}+\frac{1}{3}}{2}=\frac{13}{24}(4)\)

Lấy \((4)-(1)\Rightarrow \frac{1}{z}=\frac{13}{24}-\frac{1}{2}=\frac{1}{24}\Rightarrow z=24\)

Lấy \((4)-(2)\Rightarrow \frac{1}{x}=\frac{13}{24}-\frac{1}{4}=\frac{7}{24}\Rightarrow x=\frac{24}{7}\)

Lấy \((4)-(3)\Rightarrow \frac{1}{y}=\frac{13}{24}-\frac{1}{3}=\frac{5}{24}\Rightarrow y=\frac{24}{5}\)

Vậy \((x,y,z)=(\frac{24}{7}, \frac{24}{5}, 24)\)


Các câu hỏi tương tự
Nguyễn Thị Anh Quỳnh
Xem chi tiết
Mộc Lung Hoa
Xem chi tiết
Phạm Quỳnh Anh
Xem chi tiết
Nguyễn Thị Anh Quỳnh
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
Nguyễn Khánh Ly
Xem chi tiết
Lan Hương
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Phan Thanh Ngân
Xem chi tiết