Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hiền Nguyễn Thị

\(\left\{{}\begin{matrix}a,b,c\ge0\\\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}\ge2\end{matrix}\right.\)

CMR: \(abc\le\frac{1}{8}\)

Nguyễn Việt Lâm
17 tháng 11 2019 lúc 12:47

Chắc bạn ghi nhầm đề, ko có số hạng \(\frac{1}{1+d}\)

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)

\(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)

Tương tự ta có:

\(\frac{1}{1+b}\ge2\sqrt{\frac{ca}{\left(1+c\right)\left(1+a\right)}}\) ; \(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)

Nhân vế với vế:

\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Leftrightarrow abc\le\frac{1}{8}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
Đặng Mai Anh
Xem chi tiết
Đăng Vu Vài
Xem chi tiết
bach nhac lam
Xem chi tiết
nguyễn minh
Xem chi tiết
bach nhac lam
Xem chi tiết