\(\left\{{}\begin{matrix}4x^3-3x+\left(y-1\right)\sqrt{2y+1}=0\left(1\right)\\2x^2+x+\sqrt{-y\left(2y+1\right)}=0\left(2\right)\end{matrix}\right.\)
Đk: \(-\dfrac{1}{2}\le y\le0\)
pt (1)\(\Leftrightarrow\left(2y-2\right)\sqrt{2y+1}=-8x^3+6x\Leftrightarrow\left[\left(2y+1\right)-3\right]\sqrt{2y+1}=\left(-2x\right)^3-3\left(-2x\right)\left(3\right)\)
đặt \(\left\{{}\begin{matrix}u=-2x\\v=\sqrt{2y+1}\end{matrix}\right.\) pt (3) -> \(u^3-3u=v^3-3v\left(4\right)\)
có: \(-\dfrac{1}{2}\le y\le0\) nên \(0\le2y+1\le1\Rightarrow0\le\sqrt{2y+1}\le1hay0\le v\le1\)
từ (2), có: \(\sqrt{-y\left(2y+1\right)}=-2x^2-x\Rightarrow-2x^2-x\ge0\Rightarrow-\dfrac{1}{2}\le x\le0\Rightarrow0\le-2x\le1hay0\le u\le1\)
xét hàm số \(f\left(t\right)=t^3-3t\) liên tục trên [0;1]
\(f'\left(t\right)=3t^2-3=3\left(t^2-1\right)\le0\forall t\in\left[0;1\right]\) nên \(f\left(t\right)\) nghịch biến trên [0;1]
do đó (4)\(\Leftrightarrow f\left(u\right)=f\left(v\right)\Leftrightarrow u=v\Leftrightarrow-2x=\sqrt{2y+1}\Leftrightarrow y=\dfrac{4x^2-1}{2}\)
thay \(y=\dfrac{4x^2-1}{2}\) vào pt (2), có:
\(2x^2+x+\sqrt{\dfrac{\left(1-4x\right)^2}{2}\left(4x^2\right)}=0\Leftrightarrow2x^2+x-x\sqrt{2-8x^2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+1-\sqrt{2-8x^2}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\12x^2+4x-1=0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}vx=\dfrac{1}{6}\end{matrix}\right.\)
đk \(-\dfrac{1}{2}\le x\le0\) ta nhận nghiệm \(x=0;x=-\dfrac{1}{2}\)
+ Với x=0 có y=-1/2 (nhận)
+với x=-1/2 có y=0 ( nhận)
Vậy...