Lời giải:
Gọi $I(a,b)$ là tâm đường tròn
$(I)$ tiếp xúc với $(d)$ nên: \(R=d(I,(d))=\frac{|a-b+1|}{\sqrt{2}}(*)\)
Mặt khác:
\(\overrightarrow{AB}=(6,-2)\)
\(H(9,4)\) là trung điểm $AB$. \(\overrightarrow{HI}=(a-9,b-4)\)
\(\overrightarrow{HI}\perp \overrightarrow{AB}\Rightarrow 6(a-9)-2(b-4)=0\)
\(\Leftrightarrow 3a-b=23\)
Thay vô $(*)$ thì $R=\frac{|24-2a|}{\sqrt{2}}$
Ta cũng có \(R=IA=\sqrt{(a-6)^2+(b-5)^2}=\sqrt{(a-6)^2+(3a-23-5)^2}\)
\(=\sqrt{10a^2-180a+820}\)
Vậy: \(\frac{|24-2a|}{\sqrt{2}}=\sqrt{10a^2-180a+820}\)
$\Leftrightarrow (24-2a)^2=2(10a^2-180a+820)$
$\Leftrightarrow 16a^2-264a+1064=0$
$\Leftrightarrow 2a^2-33a+133=0$
$\Leftrightarrow a=\frac{19}{2}$ hoặc $a=7$
Đến đây bạn tìm được tâm hình tròn, biết bán kính thì sẽ tìm được pt đường tròn.