Do B thuộc BH nên tọa độ có dạng \(B\left(b;2b+3\right)\)
Gọi E là trung điểm AB \(\Rightarrow E\left(\dfrac{b+1}{2};b+3\right)\)
Do E thuộc CE nên:
\(\dfrac{b+1}{2}+b+3-2=0\Rightarrow b=-1\) \(\Rightarrow B\left(-1;1\right)\)
\(\Rightarrow\overrightarrow{AB}=\left(-2;-2\right)\Rightarrow\) đường thẳng AB nhận (1;-1) là 1 vtpt
Phương trình AB:
\(1\left(x-1\right)-1\left(y-3\right)=0\Leftrightarrow x-y+2=0\)
E(x;-x+2)
Theo đề, ta có: \(\left\{{}\begin{matrix}x=\dfrac{1+x_B}{2}\\-x+2=\dfrac{3+y_B}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_B+1=2x\\y_B+3=-2x+4\end{matrix}\right.\)
=>B(2x-1;-2x+1)
vecto AB=(2x-2;-2x-2)
BH: 2x-y+3=0
=>VTPT là (2;-1)
=>VTCP là (1;2)
Theo đề, ta có: 1(2x-2)+2(-2x-2)=0
=>2x-2-4x-4=0
=>-2x-6=0
=>x=-3
=>B(5;-5)
vecto AB=(4;-8)
=>VTPT là (8;4)
Phương trình AB là:
8(x-5)+4(y+5)=0
=>2(x-5)+y+5=0
=>2x-10+y+5=0
=>2x+y-5=0