Ta có: \(\sqrt{4}+\sqrt{6-2\sqrt{5}}+\sqrt{9}\)
\(=2+\sqrt{5-2\cdot\sqrt{5}\cdot1+1}+3\)
\(=5+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=5+\left|\sqrt{5}-1\right|\)
\(=5+\sqrt{5}-1\)(Vì \(\sqrt{5}>1\))
\(=4+\sqrt{5}\)
Ta có: \(\sqrt{4}+\sqrt{6-2\sqrt{5}}+\sqrt{9}\)
\(=2+\sqrt{5-2\cdot\sqrt{5}\cdot1+1}+3\)
\(=5+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=5+\left|\sqrt{5}-1\right|\)
\(=5+\sqrt{5}-1\)(Vì \(\sqrt{5}>1\))
\(=4+\sqrt{5}\)
Bài 1: Cho biểu thức A = 1 - \(\dfrac{\sqrt{x}}{1+\sqrt{x}}\), B = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)+ \(\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\)- \(\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
(với x ≥ 0, x ≠ 4, x ≠ 9)
a, Tính giá trị của A biết x = 6-2\(\sqrt{5}\)
b, Rút gọn P = A : B
c, Tìm giá trị nhỏ nhất của P
Cho biểu thức \(P=x^3+y^3-3\left(x+y\right)+2021\). Tính giá trị biểu thức P với :
\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
và \(y=\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
Tính giá trị của biểu thức
\(\left(4\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{4\sqrt{6}+8\sqrt{3}+4\sqrt{2}+18}-2\right)\)
B = (sqrt(x + 1))/(sqrt(x) + 2) A = (sqrt(x) - 3)/(sqrt(x) + 2) + (sqrt(x))/(sqrt(x) - 2) - (6 + sqrt(x))/(x - 4) và với x>0, x ne4 a) Tính giá trị của biểu thức B tại x = 9 b) Rút gọn biểu thức A . c) Cho P = A/R So sánh P với 2.
Cho biểu thức sau:
\(A=\left[\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}-\dfrac{3x+3}{x-9}\right]:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
a) Rút gọn biểu thức A.
b) Tính giá trị của A khi \(x=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
c) Tìm các giá trị nguyên của x để A có giá trị nguyên.
Bài 1: Rút gọn biểu thức D = \(\sqrt{16x^4}-2x^2+1\)
Bài 2: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng điều kiện xác định”
e) E = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) ĐKXĐ: \(x\ge0\)
Bài 3: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng hằng đẳng thức ”
B = \(1-\sqrt{x^2-2x+2}\)
Bài 4: Cho P = \(\dfrac{4\sqrt{x}+10}{2\sqrt{x}-1}\left(x\ge0;x\ne\dfrac{1}{4}\right)\). Tính tổng các giá trị x nguyên để biểu thức P có giá trị nguyên
Cho hai biểu thức:
\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\); \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\) với \(x\ge0,x\ne4,x\ne9\)
a) Tính giá trị của A khi \(x=\dfrac{1}{4}\)
b) Rút gọn B.
c) Tìm giá trị nguyên của x để B nhận giá trị là số tự nhiên.
* Tính giá trị của biểu thức:
a. A=\(2\sqrt{2}-3\sqrt{18}+4\sqrt{32}-\sqrt{50}\)
b. B=\(\sqrt{\left(1-\sqrt{5}\right)^2}+\sqrt{6+2\sqrt{5}}\)
c. C=\(\dfrac{1}{2-\sqrt{6}}+\dfrac{1}{2+\sqrt{6}}\)
tính giá trị biểu thức
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)