Hàm số nghịch biến trên R vì a=-2<0
Hàm số nghịch biến trên R vì a=-2<0
1. Cho hàm số \(y=x^2-5x+4\)
a) Khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số đã cho.
b) Tìm m để phương trình \(\left|x^2-5x+4\right|-2=m\) có bốn nghiệm phân biệt.
c) Tìm giá trị lớn nhất và nhỏ nhất của hàm số \(f\left(x\right)=\left|x^2-5x+4\right|\) với x ∈ [0;5]
2. Cho hàm số \(y=-2x^2+4x\)
a) Vẽ đồ thị (P) của hàm số đã cho.
b) Tìm m để phương trình \(\left|x^2-2x\right|=m\) có ba nghiệm phân biệt.
Lập bảng biến thiên và vẽ đồ thị hàm số
a) y = |x-1|+|2x-4|
b) y = \(\left\{{}\begin{matrix}2x-1,x\ge1\\-x+2,x< 1\end{matrix}\right.\)
y=-x^2+2x+3 có đồ thị là (p)
a)lập bảng biến thiên và vẽ đồ thị (p)của hàm số đã cho
b)tìm tọa độ các giao điểm của đồ thị (p) với đường thẳng y=4x-5
lập bảng biến thiên và vẽ đồ thị của hàm số y=x^2 - 2x +1( Giải giúp e với)
cho hàm số bậc nhất : y = f(x) = (m -1)x +2m +1 (dm).
Khảo sát và vẽ đồ thị hàm số khi m = 2.Tìm m để đồ thị hàm số (dm) đi qua điểm A(4, -1).Tìm m để hàm số nghịch biến trên tập xác định.Tìm điểm cố định của đồ thị hàm số (dm) đi qua.Biết hàm số \(y=ax^2+2x+b\) có giá trị lớn nhất là 4 , đồng biến trên khoảng \(\left(-\infty;1\right)\) và nghịch biến trên khoảng \(\left(1;+\infty\right)\) . Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng:
A. 3. B. . C. 1 . D. .
Cho hàm số: \(y=x^2-3x-4\) có đồ thị là (P).
a) Lập bảng biến thiên và vẽ (P).
b) Tìm m để phương trình \(\left|x^2-3x-4\right|=2m-1\) có bốn nghiệm phân biệt.
c) Tìm m để phương trình \(x^2-3\left|x\right|-4=m\) có 3 nghiệm.
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
Cho hàm số \(y=-2x^2+\left(m-3\right)x+5-m\)
a) Lập bảng biến thiên và vẽ đồ thị hàm số với m=0
b) Dựa vào đồ thị, Tìm a để phương trình \(2x^2+3x+a=0\) có 2 nghiệm phân biệt
c) Dựa vào đồ thị, vẽ đồ thị hàm số \(y=\left|2x^2+3x-5\right|\)
d) Vẽ đồ thị hàm số \(y=-2x^2-3\left|x\right|+5\)
Từ đó tìm a để \(2x^2+3\left|x\right|+a=0\) có 4 nghiệm phân biệt
e) Tìm m để hàm số đồng biến trên khoảng (amvc;3)
Vẽ đồ thị và lập bảng biến thiên của các hàm số:
b) y = |x - 1| c) y = - |x + 2|