Câu 12. Xác định hàm số bậc hai y = ax2 + bx + c biết đồ thị của nó có đỉnh I(1; −1) và đi qua điểm A(2; 0)
A. y = x 2 − 3x + 2. B. y = 2x 2 − 4x + 3. C. y = x 2 − 2x. D. y = x 2 + 2x
Lập bảng biến thiên và vẽ đồ thị của các hàm số :
a. \(y=x^2-2x-1\)
b. \(y=-x^2+3x+2\)
Khảo sát sự biến thiên và vẽ đồ thị các hàm số sau
1 , y = 2x2 - x - 2
2 , y = \(-\frac{1}{2}x^2+2x-1\)
3 , y = \(2x^2-2x\)
4 , y = \(-\frac{1}{2}x^2-x+\frac{3}{2}\)
5 , y = \(-x^2-4x+3\)
6 , y = \(-2x^2-x+2\)
7, y = \(-2x^2-2\)
8 , y = \(\left(\frac{1}{2}x^2-2x-6\right)\)
9 , y = \(2\left(x+3\right)^2\)
Tìm tập xác định của hàm số :
a. y=\(\dfrac{1}{x^2-2x}+\sqrt{x^2-1}\)
b.y=\(\sqrt{x+1}+\sqrt{5-3x}\)
c.y=\(\sqrt{5x+3}+\dfrac{2x}{\sqrt{3-x}}\)
d.y=\(\dfrac{3x}{\sqrt{4-x^2}}+\sqrt{1+x}\)
e.y=\(\dfrac{5-2x}{(2-3x)\sqrt{1-6x}}\)
cho hàm số + có đồ thị (P) và (d): y = - (m + 1)x + m + 2
a. xét sự biến thiên và vẽ (P)
b. có bao nhiên giá trị m nguyên thuộc [-10; 4]
để d cắt P tại 2 điểm A; B nằm về cùng phía trục Oy
Bài 1: Xét tính chẵn lẻ của hàm số :y=|x3-x|
Bài 2: ho hàm số y= f(x)=\(\left\{{}\begin{matrix}x-3,x\ge1\\2x^2-x-3,x< 1\end{matrix}\right.\) có đồ thị (C)
a) Tính f(4),f(-1)
b) Điểm nào sau đấy thuộc (c): A(4:1), b(-1,-4)
Bài 3: Cho tập hợp A= \(\left\{n\in◻\cdot\left|\right|9⋮\right\}\) B = (0;10)
a)Liệt kê các phần tử của A
b) Tính \(A\cap B\), \(A\cup B\)
(mình đag cần rất gấp)
Khảo sát sự biến thiên và vẽ dồ thị các hàm số sau
1 , y = \(x\left|x-2\right|+1\)
2 , y = \(\left|x^2-2x+3\right|\)
3 , y = \(x^2-4\left|x\right|+2\)
4 , y= \(x^2+x\left|x+2\right|-4\)
5 , y = \(\left(x+2\right)\left(\left|x\right|-1\right)\)
6 , y = \(\left\{{}\begin{matrix}2xneux< 0\\x^2-xneux\ge0\end{matrix}\right.\)
7 , y = \(x\left|x\right|-2x-1\)
cho hàm số \(y=x^2-2x+3\) có đồ thị (P). lập bảng biến thiên và vẽ đồ thị (P). từ đó tìm các giá trị của tham số m sao cho phương trình \(x^2-2x+3-m=0\) có 2 nghiệm phân biệt
Xét chiều biến thiên và vẽ đồ thị của các hàm số :
a. \(y=\dfrac{1}{2}x-1\)
b. \(y=4-2x\)
c. \(y=\sqrt{x^2}\)
d. \(y=\left|x+1\right|\)