\(a.\left(\dfrac{2+\sqrt{5}}{2-\sqrt{5}}-\dfrac{2-\sqrt{5}}{2+\sqrt{5}}\right).\dfrac{\sqrt{2}}{23}=\dfrac{\left(2+\sqrt{5}\right)^2-\left(2-\sqrt{5}\right)^2}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}.\dfrac{\sqrt{2}}{23}=-8\sqrt{5}.\dfrac{\sqrt{2}}{23}\)
\(b.\sqrt{\left(5-2\sqrt{6}\right)\left(4-2\sqrt{3}\right)}=\sqrt{3-2\sqrt{3}.\sqrt{2}+2}.\sqrt{3-2\sqrt{3}+1}=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-1\right)\)