Từ a+b+c=0
<=>(a+b+c)2=0
<=>a2+b2+c2+2ab+2ac+2bc=0
<=>1+2(ab+ac+bc)=0
<=>2(ab+ac+bc)=-1
<=>ab+ac+bc=\(\dfrac{-1}{2}\)
<=>(ab+ac+bc)2=\(\left(\dfrac{-1}{2}\right)^2\)
<=>a2b2+b2c2+a2c2+2abac+2abbc+2acbc=\(\dfrac{1}{4}\)
<=>a2b2+b2c2+a2c2+2abc(a+b+c)=\(\dfrac{1}{4}\)
<=>a2b2+b2c2+a2c2=\(\dfrac{1}{4}\)(vì a+b+c=0)
Từ a2+b2+c2=1
<=>(a2+b2+c2)2=1
<=>a4+b4+c4+2a2b2+2b2c2+2a2c2=1
<=>a4+b4+c4+2(a2b2+b2c2+a2c2)=1
<=>a4+b4+c4+2\(\cdot\dfrac{1}{4}\)=1
<=>a4+b4+c4+\(\dfrac{1}{2}=1\)
<=>a4+b4+c4=\(\dfrac{1}{2}\)
Vậy a4+b4+c4=\(\dfrac{1}{2}\)
Đúng 0
Bình luận (0)