Cho (O1,R1) và (O2,R2) tiếp tuyến ngoài tại A (R1>R2). Đường nối tâm O1O2 cắt (O1) tại B và cắt (O2) tại C. Dây DE của đường tròn (O1) vuông góc với BC tại trung điểm K của BC
a) Chứng minh tứ giác BDCE là hình thoi
b) Gọi I là giao điểm của CE và (O2). Chứng minh D, A, I thẳng hàng
c) Chứng minh KI là tiếp tuyến của (O2).
Cho tam giác abc có (Ib), (Ic) là các đường tròn bàng tiếp góc B, C. (Ib), (Ic) tiếp xúc với BC lần lượt tại E, F. Chứng minh BF = CE
cho tam giác abc có ab=3cm, ac=4cm, bc=5cm. kẻ ah vuông góc với bc( h thuộc bc). a/ tam giác abc là tam giác gì? vì sao. b/ tính ah, góc b và c. c/ vẽ đường tròn( b, bh) và đường tròn ( c, ch). từ điểm a lần lượt vẽ tiếp tuyến am và an của đường tròn( b) và (c). tính góc mhn
Cho (O1) và (O2) cắt nhau tại A và B. Kẻ các đường kính AC của (O1) và AD của (O2). Chứng minh rằng:
a) Ba điểm C, B, D thẳng hàng
b) CD = 2*(O1O2)
Cho đường tròn(O;R),đường kính AB và dây AC không qua tâm O .Gọi H là trung điểm của AC.
a)Tính góc ACB và chứng minh OH song song với BC .
b)Tiếp tuyến tại C của (O) cắt OH ở M .Chứng minh đường thẳng AM lá tiếp tuyến của (O) tại A .
c)Vẽ CK vuông góc với AB tại K .Gọi I là trung điểm của CK và đặt góc CAB=anpha.Chứng minh IK=2Rsin (anpha) . cos(anpha)
a)Chứng minh ba điểm M,I,B thẳng hàng.
bài 1:Qua mộột điểm M ở ngoài (O;R) ta kẻ cát tuyến MAB qua tâm O và cát tuyến MCD. Kẻ tiếp tuyến MT. Chứng minh rằng:
a. MA.MB=MC.MD và MT2=MA.MB
b. △MTC đồng dạng ▲ MDT
Bài 2: Cho tam giác ABC có cạnh AB là đường kính cố định của (O;R) , đỉnh C di chuyển trên đường tròn đó, AM và BN là các đường trung tuyến.
a.Cmr: AM2+BN2 không đổi và tính tổng theo R.
b. Tìm tập hợp trọng tâm G của ▲ABC.
Bài 3:Cho hình thang vuông ABCD ( ∠A = ∠B=90 độ), ∠CMd=90 độ với M là trung điểm của AB. Biết AB=2a. Chứng minh CD là tiếp tuyến của đường tròn đường kính AB. Tính tích BC.AD theo a.
Bài 4: Cho (O;R) và đường thẳng xy không giao nhau. Kẻ OH vuông góc với xy và lấy điểm A bất kì thuộc xy. Từ A kẻ tiếp tuyến AB, kẻ BK Vuông góc với OA ( K thuộc OA) cắt đường tròn tại C.
a. Chứng minh A là tiếp tuyến của (O)
b. Cm khi A di động dây BC luôn đi qua 1 điểm cố định.
Bài 5: Cho tam giác ABC cân tại A có góc BAC= 45 độ và nội tiếp trong (O;R).
a. Chứng tỏ AO là tia phân giác của góc BAC và tam giác BOC cân.
b. Tính độ dài các cạnh của tam giác ABC theo R.
c.Nêu rõ các xác định tâm đường tròn vừa tiếp xúc với 2 cạnh của góc BOC vừa tiếp xúc với (O)
Bài 6: Cho △ABC cân tại A. Dựng nửa đươờng tròn có tâm O thuộc đoạn BC tiếp xúc với AB,AC. Gọi P là 1 điểm trên AB, Q là 1 điểm trên AC. Chứng minh rằng PQ là tiếp tuyến của đường tròn (O) ⇔ BP.CQ=\(\dfrac{BC^2}{4}\)
Cho (O) đk AB.Trên cùng nửa mặt phẳng bờ AB,vẽ 2 tiếp tuyến Ax,By M thuộc (O);tiếp tuyến tại M cắt Ax,By lần lượt tại D,C
a) C/M:AD+BC=DC
b) góc DOC=90 độ
c) CM: đg tròn đg kính CD tiếp xúc với AB
CM hộ mình câu b),c)
Cho tam giác ABC, đường cao BE, CF cắt nhau tại H. M là trung điểm của AH. Chứng minh rằng ME, MF là tiếp tuyến của đường tròn đường kính BC.
Mình đang cần gấp ạ
Từ điểm A ởngoài (O) vẽtiếp tuyến AB, AC. Kẻ cát tuyến AMN của (O). Gọi I là trung điểm MN , BC cắt OA tại H và OI tại K.
a)Chứng minh OI.OK = OH.OA
b)Chứng minh KM, KN là các tiếp tuyến của (O).