Bài 11. Hình thang cân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Hai tia phân giác của hai góc A, B của hình thang cân ABCD (AB // CD) cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng EC = ED.

Vì ABCD là hình thang cân nên \(\widehat {DAB} = \widehat {ABC};\widehat C = \widehat D;A{\rm{D}} = BC\)

Theo đề bài, ta có AE, BE lần lượt là tia phân giác của \(\widehat {BA{\rm{D}}}\) và \(\widehat {ABC}\)

Suy ra \(\widehat {{A_1}} = \widehat {{A_2}};\widehat {{B_1}} = \widehat {{B_2}}\)

Mà \(\widehat {DAB} = \widehat {ABC}\) nên \(\widehat {{A_1}} = \widehat {{A_2}} = \widehat {{B_1}} = \widehat {{B_2}}\)

Xét ∆ADE và ∆BCE có:

\(\widehat {{A_2}} = \widehat {{B_2}}\) (chứng minh trên)

AD = BC (chứng minh trên)

\(\widehat {{D}} = \widehat {{C}}\) (chứng minh trên)

Do đó ∆ADE = ∆BCE (g.c.g).

Suy ra EC = ED (hai cạnh tương ứng).


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết