Tính các góc của hình thang cân ABCD (AB // CD), biết \(\widehat C = {40^o}\)(H.3.15).
Tính các góc của hình thang cân ABCD (AB // CD), biết \(\widehat C = {40^o}\)(H.3.15).
Cho hình thang cân ABCD, AC // CD và AB < CD (H.3.16).
a) Từ A và B kẻ AH ⊥ DC, BI ⊥ DC, H ∈ CD, I ∈ CD. Chứng minh rằng AH = BI bằng cách chứng minh ∆AHI = ∆IBA.
b) Chứng minh ∆AHD = ∆BIC, từ đó suy ra AD = BC
Thảo luận (1)Hướng dẫn giảia) Vì ABCD là hình thang cân (AB // CD) nên \(\widehat {BAI} = \widehat {AIH}\)(hai góc so le trong).
Ta có AH ⊥ DC, BI ⊥ DC suy ra AH // BI.
Do đó \(\widehat {AIB} = \widehat {HAI}\) (hai góc so le trong).
Xét ∆AHI và ∆IBA có:
\(\widehat {BAI} = \widehat {AIH}\) (chứng minh trên);
Cạnh AI chung;
\(\widehat {AIB} = \widehat {HAI}\) (hai góc so le trong).
Do đó ∆AHI = ∆IBA (c.g.c).
Suy ra AH = BI (hai cạnh tương ứng).
b) Vì ABCD là hình thang cân (AC // CD) nên \(\widehat C = \widehat D\).
Vì ∆AHD và ∆BIC có:
\(\widehat {AH{\rm{D}}} = \widehat {BIC} = {90^o}\) và \(\widehat C = \widehat D\) nên \(90^o - \widehat C = 90^o - \widehat {BIC} \Leftrightarrow \widehat {DAH} = \widehat {CBI}\)
Xét ∆AHD và ∆BIC có:
\(\widehat {AH{\rm{D}}} = \widehat {BIC} = {90^o}\) (vì AH ⊥ DC, BI ⊥ DC, H ∈ CD, I ∈ CD);
\(AH = BI\) (chứng minh trên
\(\widehat {DAH} = \widehat {CBI}\) (chứng minh trên).
Do đó ∆AHD = ∆BIC (góc - cạnh - góc).
Suy ra AD = BC (hai cạnh tương ứng).
(Trả lời bởi Hà Quang Minh)
Cho tứ giác ABCD như Hình 3.18. Biết rằng \(\widehat A = \widehat B = \widehat {{D_1}}\). Chứng minh rằng AB = BC.
Thảo luận (1)Hướng dẫn giảiTa có \(\widehat A = \widehat {{D_1}}\) mà hai góc này ở vị trí đồng vị nên AB // CD.
Suy ra tứ giác ABCD là hình thang.
Mặt khác hình thang ABCD có \(\widehat A = \widehat B\) nên ABCD là hình thang cân.
Do đó AD = BC (đpcm).
(Trả lời bởi Hà Quang Minh)
Cho hình thang cân ABCD, kẻ hai đường chéo AC, BD (H.3.19). Hãy chứng minh ∆ACD = ∆BDC. Từ đó suy ra AC = BD
Thảo luận (1)Hướng dẫn giảiVì ABCD là hình thang cân (AC // CD) nên AD = BC; \(\widehat {A{\rm{D}}C} = \widehat {BC{\rm{D}}}\)
Xét ∆ACD và ∆BDC có
AD = BC (chứng minh trên);
\(\widehat {A{\rm{D}}C} = \widehat {BC{\rm{D}}}\) (chứng minh trên);
Cạnh CD chung.
Do đó ∆ACD = ∆BDC (c.g.c).
Suy ra AC = BD (hai góc tương ứng).
(Trả lời bởi Hà Quang Minh)
Cho tam giác ABC cân tại A. Kẻ một đường thẳng d song song với BC, d cắt cạnh AB tại D và cắt cạnh AC tại E (H.3.20).
a) Tứ giác DECB là hình gì?
b) Chứng minh BE = CD.
Thảo luận (2)Hướng dẫn giảia) Theo đề bài: d // BC nên DE // BC
Suy ra DECB là hình thang.
Vì tam giác ABC cân tại A nên \(\widehat B = \widehat C\).
Hình thang DECB có \(\widehat B = \widehat C\) nên tứ giác DECB là hình thang cân.
b) Hình thang cân DECB có BE và CD là hai đường chéo.
Do đó BE = CD (đpcm).
(Trả lời bởi Hà Quang Minh)
a) Vẽ hình thang có hai đường chéo bằng nhau theo các bước sau:
- Vẽ hai đường thẳng song song a, b. Trên a lấy hai điểm A, B.
- Vẽ hai cung tròn tâm A và B có cùng bán kính sao cho cung tròn tâm A cắt b tại C; cung tròn tâm B cắt b tại D và hai đoạn thẳng AC, BD cắt nhau. Hình thang ABCD có hai đường chéo AC và BD bằng nhau.
b) Hình thang ABCD có là hình thang cân không? Vì sao?
Thảo luận (1)Hướng dẫn giảia) Học sinh vẽ hình theo các bước đã nêu ở đề bài.
b) Hình thang ABCD có hai đường chéo AC = BD.
Do đó ABCD là hình thang cân.
(Trả lời bởi Hà Quang Minh)
Cắt một mảnh giấy hình thang cân bằng một nhát thẳng cắt cả hai cạnh đáy thì được hai hình thang. Lật một trong hai hình thang đó rồi ghép với hình thang còn lại dọc theo các cạnh bên của hình thang ban đầu (Hình 3.11). Hãy giải thích tại sao hình tạo thành cũng là một hình thang cân.
Thảo luận (1)Hướng dẫn giảiTa cắt một mảnh giấy hình thang cân ABCD bằng một nhát thẳng cắt cả hai cạnh đáy.
Lật hình thang AMND rồi ghép với hình thang MBCN dọc theo các cạnh bên của hình thang ban đầu, khi đó ta được một hình mới.
Tứ giác ABCD là hình thang cân nên AB // CD suy ra MN’ // M’N.
Do đó MN’M’N là hình thang.
Vì AB // CD nên \(\widehat {AMN} = \widehat {MNC}\) (2 góc so le trong)
Mà \(\widehat {AMN} = \widehat {CM'N'}\)(theo giả thiết)
\( \Rightarrow \widehat {MNC} = \widehat {CM'N}\)
Mà hai góc này là hai góc kề một đáy nên suy ra MN’M’N là hình thang cân.
(Trả lời bởi Hà Quang Minh)
Hình thang trong Hình 3.23 có là hình thang cân không? Vì sao?
Thảo luận (1)Hướng dẫn giảiĐể hình thang ABCD là hình thang cân thì \(\widehat A = \widehat B = {120^o};\widehat C = \widehat D = {80^o}\)
Suy ra \(\widehat A + \widehat B + \widehat C + \widehat D\)=120°+120°+80°+80°=400°>360°(không thỏa mãn định lí tổng bốn góc trong một tứ giác).
Khi đó, ABCD không phải là tứ giác.
Do đó ABCD cũng không phải là hình thang cân.
(Trả lời bởi Hà Quang Minh)
Cho hình thang ABCD (AB // CD). Kẻ đường thẳng vuông góc với AC tại C và đường thẳng vuông góc với BD tại D, hai đường thẳng này cắt nhau tại E. Chứng minh rằng nếu EC = ED thì hình thang ABCD là hình thang cân.
Thảo luận (1)Hướng dẫn giảiGọi O là giao điểm của AC và BD.
Xét ∆DOE và ∆COE có:
\(\widehat {O{\rm{D}}E} = \widehat {OC{\rm{E}}} = {90^o}\) (vì OD ⊥ DE; OC ⊥ CE)
EC = ED (giả thiết)
Cạnh OE chung
Do đó ∆DOE = ∆COE (cạnh huyền – cạnh góc vuông).
Suy ra OC = OD (hai cạnh tương ứng).
Do đó tam giác OCD cân tại O nên \(\widehat {{C_1}} = \widehat {{D_1}}\)
Vì ABCD là hình thang nên AB // CD suy ra \(\widehat {{A_1}} = \widehat {{C_1}};\widehat {{B_1}} = \widehat {{D_1}}\) (cặp góc so le trong).
Do đó \(\widehat {{A_1}} = \widehat {{B_1}}\) (vì \(\widehat {{C_1}} = \widehat {{D_1}}\))
Suy ra tam giác OAB cân tại O nên OA = OB.
Do OA = OB, OC = OD nên OA + OC = OB + OD nên AC = BD
Nên ABCD là hình thang cân theo dấu hiệu nhận biết "nếu một hình thang có hai đường chéo bằng nhau thì hình thang đó là hình thang cân".
(Trả lời bởi Hà Quang Minh)
Vẽ hình thang cân ABCD (AB // CD) biết đáy lớn CD dài 4 cm, cạnh bên dài 2 cm và đường chéo dài 3 cm.
Thảo luận (1)Hướng dẫn giảiCách vẽ hình thang cân ABCD có đáy lớn CD dài 4 cm, cạnh bên dài 2 cm và đường chéo dài 3 cm:
- Vẽ cạnh CD = 4 cm.
- Dùng compa vẽ hai đường tròn (D; 2 cm) và (C; 3 cm). Hai đường tròn này cắt nhau tại điểm A.
- Dùng compa vẽ hai đường tròn (C; 3 cm) và (D; 2 cm). Hai đường tròn này cắt nhau tại điểm B.
- Nối AB, AD, BC ta được hình thang ABCD
(Trả lời bởi Hà Quang Minh)