Đặt \(a=3-x, b=2-x \)
=>\(a^4+b^4=(a+b)^4
\)và a-b=1
<=>\(a^4+b^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4 \)
và \(a-b=1 \)
<=>\(ab(2a^2+2b^2+3ab)=0 \)
và \(a-b=1 \)
Xét \(a=0\), \(\Leftrightarrow b=\pm1\)
\(b=0\), tương đương \(a=+-1 \)
\(2a^2+2b^2+3ab=0\) =>HPt vo nghiem
vậy ta có nghiệm: \(x=2,x=3\)