Gọi (O;R) là đường tròn đi qua 3 đỉnh của tam giác ABC. Gọi M, N, P tương ứng là trung điểm của BC, CA, AB. OM cắt cung nhỏ BC tại D, ON cắt cung nhỏ CA tại E, OP cắt cung nhỏ AB tại F. Gọi I là giao điểm AD và CF.
a, CMR: Hai dây AD và EF vuông góc vs nhau.
b, CMR: DC = DI.
gọi (O;R) là đường tròn đi qua ba đỉnh của tam giác ABC.Gọi M,N,P tương tứng là trung điểm của các cạnh BC,CA,AB. OM cắt cung nhỏ BC tại D,ON cắt cung nhỏ CA tại E,OP cắt cung nhỏ AB tại F.Gọi I là giao điểm của AD và CF.
a,CMR: hai dây AD và EF vuông góc với nhau
b,CMR:DC=DI
Cho tam giác ABC nội tiếp đường tròn (O). Gọi E, M, F lần lượt là điểm chính giữa của các cung BC, CA, AB.
a) Chứng minh AE ⊥ MF
b) AE cắt CF tại I. Chứng minh rằng ΔCEI là tam giác cân.
Cho đường tròn (O) và hai dây AB, AC. Gọi M, N lần lượt là điểm chính giữa của cung AB và AC. Đường thẳng MN cắt dây AB tại E và cắt dây AC tại H. Chứng minh tam giác AEH là tam giác cân.
Cho tam giác ABC nội tiếp (O). Gọi P, Q , R theo thứ tự là các điểm chính giữa của các cung bị chắn BC , CA , AB bởi các góc A , B, C
a) Chứng minh : AP QR
b) AP cắt CR tại I. Chứng minh tam giác CPI là tam giác cân
c) Chứng minh PQ là đường trung trực của IC
d) Gọi M là giao điểm của PQ và AC. Chứng minh : IM // BC
Cho một đường tròn (O) và hai dây cung bằng nhau AB=AC. Trên cung nhỏ AC lấy một điểm M. Gọi S là giao điểm của hai đường thẳng AM và BC. Chứng minh góc ASC= góc MCA
Cho đường tròn tâm O bán kính R và dây AB bất kì. Gọi M là điểm chính giữa của cung nhỏ AB. E và F là hai điểm bất kì trên dây AB. Gọi C và D tương ứng là giao điểm của ME, MF với đường tròn (O)
Chứng minh:
\(\widehat{EFD}+\widehat{ECD}=180^0\)
Cho AB và CD là hai đường kính vuông góc của đường tròn (O). Trên cung nhỏ BD lây một điểm M . Tiếp tuyến tại M cắt tia AB ở E, đoạn thẳng CM cắt AB ở S a. chứng minh ES=EM b. biết góc ESM=65 độ .tính sđ cung BM c.biết sđ cung BM =40 độ . tính góc E