Cho đường tròn tâm O bán kính R. Lấy ba điểm A, B, C trên đường tròn đó sao cho \(AB=BC=CA\). Gọi I là điểm bất kì thuộc cung nhỏ BC (và I không trùng với B, C). Gọi M là giao điểm của CI với AB. Gọi N là giao điểm của BI với AC. Chứng minh :
a) \(\widehat{ANB}=\widehat{BCI}\)
b) \(\widehat{AMC}=\widehat{CBI}\)
Cho đường tròn (O) và hai dây AB, AC bằng nhau. Trên cung nhỏ AC lấy một điểm M. Gọi S là giao điểm của AM và BC. Chứng minh \(\widehat{ASC}=\widehat{MCA}.\)
Cho đường tròn (O) và hai dây AB, AC. Gọi M, N lần lượt là điểm chính giữa của cung AB và AC. Đường thẳng MN cắt dây AB tại E và cắt dây AC tại H. Chứng minh tam giác AEH là tam giác cân.
Cho một đường tròn (O) và hai dây cung bằng nhau AB=AC. Trên cung nhỏ AC lấy một điểm M. Gọi S là giao điểm của hai đường thẳng AM và BC. Chứng minh góc ASC= góc MCA
Cho nửa đường tròn tâm O bán kính R, đường kính ab chứa nửa đường tròn, kẻ hai tiếp tuyến Ax và By với đường tròn. M là một điểm bất kỳ trên nửa đường tròn. Tiếp tuyến tại M cắt Ax, By lần lượt tại C và D.
a) CMR: CD = AC + BD và \(\widehat{COD}\) vuông'
b) CMR: \(AC.BD=R^2\)
c) OC cắt AM tại E; OD cắt BM tại F, chứng minh EF = R
Hai dây cung AB và CD kéo dài cắt nhau tại điểm E ở ngoài đường tròn (O) (B nằm giữa A và E, C nằm giữa D và E). Cho biết \(\widehat{CBE}=75^0,\widehat{CEB}=22^0,\widehat{AOD}=144^0\)
Chứng minh :
\(\widehat{AOB}=\widehat{BAC}\)
Trên đường tròn (O; R) vẽ ba dây liên tiếp bằng nhau. AB, BC, CD mỗi dây có độ dài nhỏ hơn R. Các đường thẳng AB và CD cắt nhau tại I, các tiếp tuyến của đường tròn tại B, D cắt nhau tại K
a) Chứng minh \(\widehat{BIC}=\widehat{BKD}\)
b) Chứng minh BC là tia phân giác của \(\widehat{KBD}\)
Cho AB và CD là hai đường kính vuông góc của đường tròn (O). Trên cung nhỏ BD lấy một điểm M. Tiếp tuyến tại M cắt tia AB ở E, đoạn thẳng CM cắt AB ở S. Chứng minh ES = EM.