Cho hình bình hành ABCD, các đường chéo cắt nhau ở O. Gọi E, F, G, H theo thứ tự là giao điểm của các đường phân giác của các tam giác AOB, BOC, COD, DOA.
Chứng minh rằng EFGH là hình thoi ?
Bài 1. Cho hình thoi ABCD . Trên hai cạnh BC , CD lần lượt lấy hai điểm M và N sao cho
BM DN . Gọi P Q ; | thứ tự là giao điểm của AM và AN với đường chéo BD . Chứng minh rằng: |
1.1. BAM DAN | 1.2.Tứ giác APDQ là hình thoi. |
Bài 2. Cho hình bình hành ABCD có AB AC . Gọi I là trung điểm của BC , trên tia AI lấy điểm
E sao cho I là trung điểm của AE .
2.1. Chứng minh ABEC là hình thoi.
2.2. Chứng minh D C E ; ; thẳng hàng.
2.3. Tính số đo DAE
Bài 3. Cho hình bình hành ABCD có AB bằng đường chéo AC . Gọi O là trung điểm của BC trên tia
AO lấy điểm E sao cho O là trung điểm của AE . Đường thẳng vuông góc với AE tại E cắt AC tại
F.
3.1. Chứng minh ABEC là hình thoi
3.2. Chứng minh tứ giác ADFE là hình chữ nhật
3.3. Vẽ AI CD tại I . Chứng minh rằng nếu AI AO thì AC BD và ABO 60
Bài 4. Cho hình bình hành ABCD .Trên các cạnh AB và CD lần lượt lấy các điểm M và N sao cho
AM DN . Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E và F.
4.1. Chứng minh AB là đường trung trực của EF .
4.2. Chứng minh tứ giác MEBF là hình thoi.
4.3. Hình bình hành ABCD có thêm điều kiện gì để tứ giác BCNE là hình thang cân.
Bài 5. Cho tam giác ABC cân tại A. Đường trung tuyến AM , trên tia AM lấy điểm D sao cho M là
trung điểm của AD .Gọi K là trung điểm của MC ,trên tia DK lấy điểm E sao cho K là trung điểm của
ED .
5.1. Chứng minh tứ giác ABDC là hình thoi .
5.2. Chứng minh tứ giác AMCE là hình chữ nhật.
5.3. Gọi I là giao điểm của AM và BE . Chứng minh I là trung điểm của BE .
5.4. Chứng minh rằng: AK ; CI ; EM đồng quy.
Cho hình thoi ABCD có O là giao điểm của 2 đường chéo. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm M, N, P, Q sao cho AM = CN = CP = QA. Cm:
a) Tứ giác BMDP là hình bình hành.
b) 3 điểm N, O, Q thẳng hàng.
c) Tứ giác MNPQ là hình chữ nhật.
(Mình đang cần gấp các bạn giúp mình nha)
Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Gọi E, F, G, H theo thứ tự là chân các đường vuông góc kẻ từ O đến AB, BC, CD, DA. Tứ giác EFGH là hình gì ? Vì sao ?
Bài 1. Cho hình thoi ABCD . Trên hai cạnh BC , CD lần lượt lấy hai điểm M và N sao cho
BM DN . Gọi P Q ; | thứ tự là giao điểm của AM và AN với đường chéo BD . Chứng minh rằng: |
1.1. BAM DAN | 1.2.Tứ giác APDQ là hình thoi. |
Bài 12: Cho hình thoi ABCD có AH là đường cao. Gọi M là trung điểm của AD . Biết a) Chứng minh: HM = AM b) Chứng minh: Tam giác AHM đều c) Tính số đo các góc của hình thoi ABCD.
Bài 134. Cho hình thang cân ABCD đáy nhỏ là AB. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA.
a) Chứng minh tứ giác EFGH là hình thoi.
b) Gọi O là giao điểm của hai đường chéo của hình thang cân . Chứng minh E, O, G thẳng hàng.
Cho hình chữ nhật ABCD có O là giao điểm hai đường chéo AC và BD. Gọi M là trung điểm của OA, N là điểm đối xứng với điểm B qua điểm M.
a) Chứng minh tứ giác OMND là hình thang.
b) Chứng minh tứ giác AODN là hình thoi.
c) Từ N vẽ NE vuông góc với CD (E thuộc CD). Gọi F
là giao điểm của AD và ON. Tứ giác DENF là hình gì ?
Vì sao ?
Cho hình thang ABCD gọi M, N, P, Q lần lượt là trung điểm của hai đáy và hai đường chéo của hình thang.
a) Chứng minh rằng tứ giác MPNQ là hình bình hành.
b) Hình thang ABCD phải có thêm điều kiện gì để tứ giác MPNQ là hình thoi?