Cho ΔABC có D, E lần lượt là trung điểm của các cạnh BC, AB. Gọi G là trọng tâm của ΔABC. Trên tia AG lấy điểm M sao cho G là trung điểm của Am.
a) Chứng minh: GD = DM và ΔBDM=ΔCDG.
b) Tính độ dài đoạn thẳng BM theo độ dài đoạn thẳng CE.
c) Chứng minh: AD = \(\dfrac{\text{AB+AC}}{2}\)
Cho tam giác ABC :
a) Qua trung điểm D của cạnh BC, kẻ đường thẳng song song với AB, nó cắt cạnh AC tại E. Qua E, kẻ đường thẳng song song với BC, nó cắt AB tại F. Chứng minh \(\Delta CDE=\Delta EFA\). Từ đó suy ra E là trung điểm của cạnh AC ?
b) Chứng minh rằng đường thẳng đi qua các trung điểm hai cạnh của một tam giác thì song song với cạnh thứ ba của tam giác đó ?
c) Chứng minh rằng tâm đường tròn ngoại tiếp tam giác ABC là trực tâm của tam giác có ba đỉnh là trung điểm ba cạnh của tam giác ABC ?
Dựng các hình vuông ABDE và ACFG bên ngoài tam giác nhọn ABC cho trước.
a) Gọi H là điểm thuộc đường thẳng BC sao cho \(AH\perp BC\). Gọi I, J là các điểm thuộc đường thẳng AH sao cho \(EI\perp AH\) và \(GJ\perp AH\). Chứng minh :
\(\Delta ABH=\Delta EAI,\Delta ACH=\Delta GAJ\)
Từ đó suy ra đường thẳng AH cắt EG tại trung điểm K của EG (tức là AK là trung tuyến của tam giác AEG)
b) Gọi L là điểm thuộc đường thẳng AK sao cho K là trung điểm của AL. Chứng minh AL = BC
c) Chứng minh \(\Delta ABL=\Delta BDC\). Từ đó suy ra CD là một đường cao của tam giác BCL
d) Chứng minh rằng các đường thẳng AH, BF, CD đồng quy ?
Bài 5 : Cho ΔABC cân tại A có BAC ̂ =40 do .
a) So sánh AB và BC.
b) Đường phân giác AD và đường trung tuyến BE của ΔABC cắt nhau tại H. Chứng minh ΔADB=ΔADC.
c) Chứng minh CH đi qua trung điểm của cạnh AB.
d) Qua B dựng đường vuông góc với AB và qua C dựng đường vuông góc với AC. hai đường này cắt nhau tại K. Chứng minh ba điểm A, D, K thẳng hàng.
Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.
a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90
Chứng minh HK // AB và KB = AH.
Chứng minh ΔMAC cân.
Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.
Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
Chứng minh rằng ΔAHB = ΔAHC.
Gọi I là trung điểm của cạnh AH. Trên tia đối của tia IB, lấy điểm D sao cho IB = ID. Chứng minh IB = IC, từ đó suy ra AH + BD > AB + AC.
Trên cạnh CI, lấy điểm E sao cho CE 23 CI. Chứng minh ba điểm D, E, H thẳng hàn
Bài 5: Cho ΔABC cân tại A, A= 90. vẽ AH vuông góc với BC tại H.
a) Chứng minh: ΔABH = ΔACH
b) Cho biết AH = 4cm; BH = 3cm. Tính độ dài cạnh AB.
c) Qua H, vẽ đường thẳng song song với AC cắt cạnh AB tại M. Gọi G là giao điểm của CM và AH. Chứng minh G là trọng tâm của ΔABC và tính độ dài cạnh AG.
(Vẽ hình giúp mk với nha mk cần gấp ạ)
Bài 5 : . Cho ΔABC vuông tại A có AB=12cm, BC=20cm.
a) Tính AC và so sánh các góc của ΔABC.
b) Từ A vẽ đường thẳng vuông góc với BC tại H, trên tia đối của tia HA lấy điểm D sao cho H là trung điểm của AD. Chứng minh ΔBDA cân.
c) Chứng minh ΔDBC vuông.
d) Gọi M là trung điểm của cạnh AB và K là hình chiếu của H trên DC. Chứng minh ba điểm M, H, K thẳng hàng
1.Cho Δ ABC có AB=3cm, AC=4cm, BC=5cm.
a/ Δ ABC là Δ gì?
b/ Vẽ BD là phân giác ∠. Trên cạnh BC lấy điểm E sao cho AB=AE. CM: AD=DE
c/ CM: AE⊥BD
d/ Kéo dài BA cắt ED tại F. CM: AE song song FC
2. Cho Δ ABC cân tại A. Kẻ AH⊥BC tại H
a/ CM: ΔABH\(=\)△ACH
b/ Vẽ trung tuyến BM. Gọi G là giao điểm của AH và BM. Chứng tỏ G là trọng tâm của ΔABC
c/ Cho AB=30, BH=18. Tính AH, AG
d/ Từ H kẻ HD song song với AC ( D ∈ AB). CM 3 điểm C, G, D thẳng hàng.
3. Cho Δ ABC⊥A. Biết AB=3, AC=4.
a/ Tính BC
b/ Gọi M là trung điểm của BC. Kẻ BH⊥AM tại H, CK⊥AM tại K. CM: ΔBHM=ΔCKM
c/ Kẻ HI⊥BC tại I. So sánh HI và MK
d/ So sánh BH+BK với BC
Bài 5 : Cho ΔABC với độ dài ba cạnh AB=6cm, AC=8cm, BC=10cm.
a) Chứng minh ΔABC vuông.
b) Trên cạnh BC lấy điểm D sao cho DB=BA. Từ D vẽ Dx vuông góc với BC. Dx cắt AC tại H. Chứng minh ΔHBA= ΔHBD. Suy ra BH là tia phân giác của ABC ̂ .
c) Tia Dx cắt BA tại I. Chứng minh ΔBCI cân.
d) Gọi M là trung điểm của CI. Chứng minh ba điểm B, H, M thẳng hàng.
Cho tam giác ABC có AB < AC. Tia phân giác góc BAC cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AB = AE.
a) Chứng minh ΔADB = ΔADE.
b) Chứng minh AD là đường trung trực của đoạn thẳng BE.
c) So sánh DB và DC.
d) Qua E vẽ đường thẳng song song với AD cắt BC tại F. Chứng minh D là trung điểm của đoạn thẳng BF.