3,
Ta có
\(\tan\widehat{ABH}=\tan41,5^0=\dfrac{AH}{BH}\approx1\Leftrightarrow AH\approx BH\)
\(\tan\widehat{ACH}=\tan32^0=\dfrac{AH}{CH}\approx1\Leftrightarrow AH\approx CH\)
Vậy \(AH\approx\dfrac{BH+CH}{2}=\dfrac{BC}{2}=150\left(m\right)\)
4, Bài này mình làm tròn đến hàng đơn vị nhé
\(\tan\widehat{B}=\tan30^0=\dfrac{AH}{BH}=\dfrac{\sqrt{3}}{3}\Leftrightarrow AH=\dfrac{\sqrt{3}BH}{3}\)
\(\tan\widehat{ACH}=\tan35^0=\dfrac{AH}{CH}\approx1\Leftrightarrow AH\approx CH\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{3}BH\approx CH\)
Mà \(BH-CH=BC=1500\Leftrightarrow BH-\dfrac{\sqrt{3}}{3}BH=1500\)
\(\Leftrightarrow\dfrac{3-\sqrt{3}}{3}BH=1500\\ \Leftrightarrow\left(3-\sqrt{3}\right)BH=4500\\ \Leftrightarrow BH=\dfrac{4500}{3-\sqrt{3}}=\dfrac{4500\left(3+\sqrt{3}\right)}{6}=750\left(3+\sqrt{3}\right)\left(cm\right)\)
\(\Leftrightarrow AH=\dfrac{\sqrt{3}}{3}BH=\dfrac{\sqrt{3}}{3}\cdot750\left(3+\sqrt{3}\right)=250\sqrt{3}\left(3+\sqrt{3}\right)\\ AH=750\sqrt{3}+750\left(cm\right)\)
Vậy ...