Theo đề bài :
\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=1\) (1)
Nhân x+y+z vào (1) ta được :
\(\dfrac{x\left(x+y+z\right)}{y+z}+\dfrac{y\left(x+y+z\right)}{z+x}+\dfrac{z\left(x+y+z\right)}{x+y}=x+y+z\) = 1
\(\dfrac{x^2+xy+xz}{y+z}+\dfrac{xy+y^2+yz}{z+x}+\dfrac{zx+zy+z^2}{x+y}=1\)
\(\dfrac{x^2+x\left(y+z\right)}{y+z}+\dfrac{y^2+y\left(z+x\right)}{z+x}+\dfrac{z^2+z\left(x+y\right)}{x+y}=1\)
\(x+y+z+\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}=1\)
Mà \(x+y+z=1\)
Suy ra \(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}=0\)