\(x^2+5x+6=0\)
\(\Rightarrow x^2+2x+3x+6=0\)
\(\Rightarrow x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+2=0\\x+3=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}-2\\-3\end{array}\right.\)
Vậy x = -2 và x = -3
Ta có: \(x^2+5x+6=0\)
<=> \(\left(x^2+2x\right)+\left(3x+6\right)=0\)
<=> \(\left(x+2\right)\left(x+3\right)=0\)
<=> \(\left[\begin{array}{nghiempt}x+2=0\\x+3=0\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x=-2\\x=-3\end{array}\right.\)
Vậy x\(\in\left\{-3;-2\right\}\)
x2 + 5x + 6 = 0
⇒x2+ 2x + 3x + 6 = 0
⇒x ( x + 2 ) + 3 ( x + 2 ) = 0
⇒( x + 2 ) ( x + 3 ) = 0
⇒\(\left[\begin{array}{nghiempt}x+2=0\\x+3=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=-2\\x=-3\end{array}\right.\)
Vậy x = -2 và x = -3
x2 + 5x + 6 = 0
⇒x2 + 2x + 3x + 6 = 0
⇒x( x + 2 ) + 3( x + 2 ) = 0
⇒( x + 2 )( x + 3 ) = 0
⇒\(\left[\begin{array}{nghiempt}x+2=0\\x+3=0\end{array}\right.\) ⇒\(\left[\begin{array}{nghiempt}x=-2\\y=-3\end{array}\right.\)
Vậy x = -2 và x = -3