Câu 2:
Ta có: \(x^2-2\left(m+1\right)x+m^2+4=0\)
\(\text{Δ}=\left(2m+2\right)^2-4\left(m^2+4\right)\)
\(=4m^2+8m+4-4m^2-16\)
\(=8m-12\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow8m>12\)
hay \(m>\dfrac{3}{2}\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)=2m+2\\x_1x_2=m^2+4\end{matrix}\right.\)
Vì x1 là nghiệm của phương trình nên ta có: \(x_1^2-2\left(m+1\right)x_1+m^2+4=0\)
\(\Leftrightarrow x_1^2=2\left(m+1\right)x_1-m^2-4\)
Ta có: \(x_1^2+2x_2\left(m+1\right)=2m^2+20\)
\(\Leftrightarrow2\left(m+1\right)\cdot x_1-m^2-4+2x_2\left(m+1\right)-2m^2-20=0\)
\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-3m^2-24=0\)
\(\Leftrightarrow4\left(m+1\right)\cdot\left(m+1\right)-3m^2-24=0\)
\(\Leftrightarrow4m^2+8m+4-3m^2-24=0\)
\(\Leftrightarrow m^2+8m-20=0\)
\(\Leftrightarrow\left(m+10\right)\left(m-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-10\left(loại\right)\\m=2\left(nhận\right)\end{matrix}\right.\)