a+b+c =3 <=>a^2 +b^2 +c^2 +2ab+2bc+2ca =9 (1)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
<=>\(2a^2+2b^2+2c^2-2ac-2bc-2ca\ge0\)
<=>\(a^2+b^2+c^2\ge ac+bc+ca\) (2)
\(\left(1\right);\left(2\right)\Rightarrow3a^2+3b^2+3c^2\ge9\Rightarrow B\ge3\)
đẳng thức khi a=b=c =1
Áp dụng BĐT Cauchy:
\(a^2+1\ge2a\)
\(b^2+1\ge2b\)
\(c^2+1\ge2c\)
\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)=6\)
\(\Rightarrow B\ge3\)
Dấu = xảy ra \(\Leftrightarrow\)a=b=c=1