\(A=\dfrac{3}{2}-tana\cdot cos^2a\)
\(=\dfrac{3}{2}-\dfrac{sina}{cosa}\cdot cos^2a\)
\(=\dfrac{3}{2}-sina\cdot cosa\)
\(=\dfrac{3}{2}-\dfrac{1}{2}sin2a\)
\(0^0< a< 90^0\)
=>\(0< =2a< =180^0\)
=>\(sin2a\in\left[-1;1\right]\)
\(-1< =sin2a< =1\)
=>\(\dfrac{1}{2}>=-\dfrac{1}{2}sin2a>=-\dfrac{1}{2}\)
=>\(\dfrac{7}{2}>=-\dfrac{1}{2}sin2a+3>=\dfrac{5}{2}\)
=>\(\dfrac{5}{2}< =y< =\dfrac{7}{2}\)
\(y_{min}=\dfrac{5}{2}\) khi sin2a=1
=>\(2a=\dfrac{\Omega}{2}+k2\Omega\)
=>\(a=\dfrac{\Omega}{4}+k\Omega\)
mà 0<a<90
nên a=45