Bạn đăng tách 2 bài ra cho mn cùng giúp nhé
Câu 2:
a: Thay m=-1 vào (1), ta được:
\(x^2-2x+2\cdot\left(-1\right)+3=0\)
=>x=1
b: \(\text{Δ}=\left(2m+4\right)^2-4\left(2m+3\right)=4m^2+16m+16-8m-12\)
\(=4m^2-4m+4=\left(2m-1\right)^2+3>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2-1< =0\)
\(\Leftrightarrow\left(2m+4\right)^2-2\left(2m-3\right)-1< =0\)
\(\Leftrightarrow4m^2+16m+16-4m+6-1< =0\)
\(\Leftrightarrow4m^2+12m+21< =0\)
\(\Leftrightarrow m\in\varnothing\)