Trong mp (SAB), từ M kẻ \(MP\perp SB\)
Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp MP\)
\(\Rightarrow MP\perp\left(SBC\right)\Rightarrow MP\in\left(\alpha\right)\)
Trong mp (SBC), qua P kẻ đường thẳng song song MN cắt SC tại Q
\(\Rightarrow NMPQ\) là thiết diện của \(\left(\alpha\right)\) và chóp
\(MN||BC\) (đường trung bình), mà \(BC\perp\left(SAB\right)\Rightarrow MN\perp\left(SAB\right)\Rightarrow MN\perp MP\)
\(\Rightarrow\) Thiết diện là hình thang vuông tại M và P
Từ A kẻ \(AH\perp SB\Rightarrow\) MP là đường trung bình tam giác ABH \(\Rightarrow MP=\dfrac{1}{2}AH\)
Tam giác SAB vuông cân tại A \(\Rightarrow AH=\dfrac{1}{2}SB=\dfrac{1}{2}\sqrt{SA^2+AB^2}=\dfrac{a\sqrt{2}}{2}\Rightarrow MP=\dfrac{a\sqrt{2}}{4}\)
\(MN=\dfrac{BC}{2}=\dfrac{a}{2}\)
\(\dfrac{BP}{BH}=\dfrac{MP}{AH}=\dfrac{1}{2}\Rightarrow BP=\dfrac{1}{2}BH=\dfrac{1}{4}SB\Rightarrow SP=\dfrac{3}{4}SB\)
Talet: \(\dfrac{PQ}{BC}=\dfrac{SP}{SB}=\dfrac{3}{4}\Rightarrow PQ=\dfrac{3}{4}BC=\dfrac{3a}{4}\)
\(S_{NMPQ}=\dfrac{1}{2}MP.\left(MN+PQ\right)=...\)