Lời giải:
Áp dụng BĐT AM-GM:
\(ab\leq \frac{(a+b)^2}{4}; bc\leq \frac{(b+c)^2}{4}; ca\leq \frac{(c+a)^2}{4}\). Do đó:
\(\frac{ab}{c^2+3}+\frac{bc}{a^2+3}+\frac{ac}{b^2+3}\leq \frac{1}{4}\underbrace{\left(\frac{(a+b)^2}{c^2+3}+\frac{(b+c)^2}{a^2+3}+\frac{(c+a)^2}{b^2+3}\right)}_{M}(*)\)
Lại có, từ $a^2+b^2+c^2=3$ và áp dụng BĐT Cauchy-Schwarz suy ra:
\(M=\frac{(a+b)^2}{(a^2+c^2)+(b^2+c^2)}+\frac{(b+c)^2}{(a^2+b^2)+(a^2+c^2)}+\frac{(c+a)^2}{(b^2+a^2)+(b^2+c^2)}\)
\(\leq \frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}+\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}+\frac{c^2}{b^2+c^2}+\frac{a^2}{b^2+a^2}\)
\(\Leftrightarrow M\leq \frac{a^2+b^2}{a^2+b^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{c^2+a^2}{c^2+a^2}=3(**)\)
Từ \((*); (**)\Rightarrow \text{VT}\leq \frac{3}{4}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
\(VT=\Sigma\frac{ab}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}\le\frac{1}{2}.\Sigma\frac{ab}{\sqrt{a^2+c^2}.\sqrt{b^2+c^2}}\le\frac{1}{4}\left(\Sigma\frac{a^2}{a^2+c^2}+\Sigma\frac{b^2}{b^2+c^2}\right)=\frac{3}{4}\)
(tắt tí ạ, ko chắc)