Tham khảo: Bài 4.8 trang 211 Sách bài tập Đại số và giải tích 11: Chứng minh rằng với |x| rất bé so với
Tham khảo cách giải:
Đặt \(x\left(y\right)=\sqrt{a^2+x}\) ta có:
\(y'\left(x\right)=\dfrac{\left(a^2+x\right)'}{2\sqrt{a^2+x}}=\dfrac{1}{2\sqrt{a^2+x}}\)
Từ đó:
\(\Delta y=y\left(x\right)-y\left(0\right)\approx y'\left(0\right)x\)
\(\Rightarrow\sqrt{a^2+x}-\sqrt{a^2+0}\approx\dfrac{1}{2\sqrt{a^2+0}}x\)
\(\Rightarrow\sqrt{a^2+x}-a\approx\dfrac{x}{2a}\)
\(\Rightarrow\sqrt{a^2+x}\approx a+\dfrac{x}{2a}\)
Áp dụng :
\(\sqrt{146}=\sqrt{12^2+2}\)
\(\approx12+\dfrac{2}{2.12}\approx12,0833\)