Lời giải:
Thực hiện biến đổi tương đương:
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\)
\(\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)
\(\Leftrightarrow (a^2+b^2+2)(ab+1)\geq 2(a^2+1)(b^2+1)\)
\(\Leftrightarrow (a^2+b^2)ab+a^2+b^2+2(ab+1)\geq 2(a^2b^2+a^2+b^2+1)\)
\(\Leftrightarrow (a^2+b^2)ab+2ab\geq a^2+b^2+2a^2b^2\)
\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)
\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\)
\(\Leftrightarrow (ab-1)(a-b)^2\geq 0\) (luôn đúng với mọi $ab\geq 1$)
Do đó ta có đpcm
Dấu "=" xảy ra khi $a=b$ hoặc $ab=1$