Theo công thức tọa độ phép tịnh tiến:
a. \(\left\{{}\begin{matrix}x_{A'}=x_A+2=3+2=5\\y_{A'}=y_A+5=1+5=6\end{matrix}\right.\) \(\Rightarrow A'\left(5;6\right)\)
b. \(\left\{{}\begin{matrix}x_B=x_B'-1\\y_B=y_{B'}+3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_{B'}=x_B+1=5\\y_{B'}=y_B-3=-1\end{matrix}\right.\) \(\Rightarrow B'\left(5;-1\right)\)
c. \(\Delta'\) là ảnh của \(\Delta\) qua phép tịnh tiến nên \(\Delta'\) cùng phương \(\Delta\)
\(\Rightarrow\) Phương trình \(\Delta'\) có dạng: \(3x+y+c=0\) (1)
Lấy \(C\left(0;1\right)\in\Delta\), gọi \(T_{\overrightarrow{a}}\left(C\right)=C'\Rightarrow C'\in\Delta'\)
\(\left\{{}\begin{matrix}x_{C'}=x_C-1=-1\\y_{C'}=y_C+3=4\end{matrix}\right.\) \(\Rightarrow C'\left(-1;4\right)\)
Thế tọa độ C' vào (1):
\(-3+4+c=0\Rightarrow c=-1\)
Vậy pt \(\Delta'\) có dạng: \(3x+y-1=0\)
//Cách khác câu c:
Do pt \(\Delta\) dạng \(3x+y-1=0\) nên \(\Delta\) nhận \(\overrightarrow{u}=\left(-1;3\right)\) là 1 vtcp
Mà \(\overrightarrow{u}=\overrightarrow{a}\) hay \(\overrightarrow{u}\) và \(\overrightarrow{a}\) cùng phương nên \(\Delta'\) trùng \(\Delta\)
hay pt \(\Delta'\) có dạng: \(3x+y-1=0\)
d.
Đường tròn (C) tâm I(-1;3) bán kính R=2
\(\Rightarrow\) (C') có tâm \(I'\) sao cho \(T_{\overrightarrow{v}}\left(I\right)=I'\) và bán kính \(R'=R=2\)
\(\left\{{}\begin{matrix}x_{I'}=x_I+2=1\\y_{I'}=y_I+5=8\end{matrix}\right.\)
\(\Rightarrow I'\left(1;8\right)\)
Phương trình (C'):
\(\left(x-1\right)^2+\left(y-8\right)^2=4\)