gieo 2 đồng xu A và B một cách độc lập . đồng xu A chế tạo cân đối , đồng xu B chế tạo không cân đối nên xác suất xuất hiện mặt sấp gấp 3 lần xác suất xuất hiện mặt ngửa . tính xác suất để :
a) khi gieo 2 đồng xu 1 lần thì cả 2 đồng xu đều ngửa .
b) khi gieo 2 đồng xu 2 lần thì 2 lần cả 2 đồng xu đều ngửa .
Gieo 3 đồng xu độc lập , biết xác suất gieo ít nhất 1 mặt ngửa là 7/8 . Tính xác suất để xuất hiện 3 mặt ngửa
gieo 3 đồng xu cân đối 1 cách độc lập . Tính xác suất để :
a) cả 3 đồng xu đều sấp .
b) có ít nhất 1 đồng xu sấp .
c) có đúng 1 đồng xu sấp .
Khi gieo 1 đồng xu, ta ký hiệu S cho kết quả "Xuất hiện mặt sấp", N cho kết quả "Xuất hiện mặt ngửa". Xét phép thử T: "Gieo liên tiếp 1 đồng xu hai lần". Không gian thử của T là:
A. Ω = {SS, NN, SN}
B. Ω = {SS, NN, SN, NS}
C. Ω = {NS, SN}
D. Ω = {SS, NN}
Gieo 8 đồng xu cân đối, tính xác suất để có ít nhất 4 mặt ngửa.
Gieo ngẫu nhiên 1 con xúc xắc cân đối đồng chất 2 lần. Tìm xác suất của biến cố: a) Lần thứ nhất xuất hiện mặt 3 chấm? b) Ít nhất 1 lần xuất hiện mặt 2 chấm? c) Tổng số chấm của 2 lần không lớn hơn 5?
Gieo một con súc sắc cân đối và đồng chất 2 lần. Tính xác suất của các biện cố : A: mặt 3 chấm xuất hiên ít nhất 1 lần. B: mặt 3 chấm xuất hiện ở lần gieo thứ 2. C: tổng số chấm 2 lần gieo bằng 9. D: tổng số chấm hai lần gieo được chia hết cho 3. E: tổng số chấm hai lần gieo không vượt qua 9.